OS | R Documentation |
Provides fixed bandwidths for spatial or spatiotemporal data based on the maximal smoothing (oversmoothing) principle of Terrell (1990).
OS(
pp,
nstar = c("npoints", "geometric"),
scaler = c("silverman", "IQR", "sd", "var")
)
OS.spattemp(
pp,
tt = NULL,
nstar = "npoints",
scaler = c("silverman", "IQR", "sd", "var")
)
pp |
An object of class |
nstar |
Optional. Controls the value to use in place of the number of
observations n in the oversmoothing formula. Either a character
string, |
scaler |
Optional. Controls the value for a scalar representation of
the spatial (and temporal for |
tt |
A numeric vector of equal length to the number of points in |
These functions calculate scalar smoothing bandwidths for kernel density
estimates of spatial or spatiotemporal data: the “maximal amount of smoothing
compatible with the estimated scale of the observed data”. See Terrell
(1990). The OS
function returns a single bandwidth for isotropic smoothing
of spatial (2D) data. The OS.spattemp
function returns two values – one for
the spatial margin and another for the temporal margin, based on independently applying
Terrell's (1990) rule (in 2D and 1D) to the spatial and temporal margins of the supplied data.
The formula
requires a sample size, and this can be minimally tailored via nstar
.
By default, the function simply uses the number of observations in
pp
: nstar = "npoints"
. Alternatively, the user can specify their own value by simply
supplying a single positive numeric value to nstar
.
For OS
(not applicable to OS.spattemp
), if pp
is a
ppp.object
with factor-valued
marks
, then the user has the option of using
nstar = "geometric"
, which sets the sample size used in the formula
to the geometric mean of the counts of observations of each mark. This can
be useful for e.g. relative risk calculations, see Davies and Hazelton
(2010).
The scaler
argument is used to specify spatial
(as well as temporal, in use of OS.spattemp
) scale. For isotropic smoothing in the spatial
margin, one may use the ‘robust’ estimate
of standard deviation found by a weighted mean of the interquartile ranges
of the x
- and y
-coordinates of the data respectively
(scaler = "IQR"
). Two other options are the raw mean of the
coordinate-wise standard deviations (scaler = "sd"
), or the square
root of the mean of the two variances (scaler = "var"
). A fourth
option, scaler = "silverman"
(default), sets the scaling constant to
be the minimum of the "IQR"
and "sd"
options; see Silverman
(1986), p. 47. In use of OS.spattemp
the univariate version of the elected scale
statistic is applied to the recorded times of the data for the temporal bandwidth.
Alternatively, like nstar
, the user can specify their
own value by simply supplying a single positive numeric value to
scaler
for OS
, or a numeric vector of length 2 (in the order of [<spatial scale>, <temporal scale>])
for OS.spattemp
.
A single numeric value of the estimated spatial bandwidth for OS
, or a named numeric vector of length 2 giving
the spatial bandwidth (as h
) and the temporal bandwidth (as lambda
) for OS.spattemp
.
T.M. Davies
Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Terrell, G.R. (1990), The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
data(pbc)
OS(pbc)
OS(pbc,nstar="geometric") # uses case-control marks to replace sample size
OS(pbc,scaler="var") # set different scalar measure of spread
data(burk)
OS.spattemp(burk$cases)
OS.spattemp(burk$cases,scaler="sd")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.