View source: R/full_em_algo_functs.R
run_full_glmeiv_given_pilot_params | R Documentation |
Run full GLM-EIV given pilot estiamtes
run_full_glmeiv_given_pilot_params(
m,
g,
m_fam,
g_fam,
pi_guess,
m_intercept_guess,
m_perturbation_guess,
m_covariate_coefs_guess,
g_intercept_guess,
g_perturbation_guess,
g_covariate_coefs_guess,
covariate_matrix,
m_offset,
g_offset,
ep_tol = 1e-05,
max_it = 75,
use_mrna_modality = TRUE
)
m |
mRNA counts |
g |
gRNA counts |
m_fam |
family describing m |
g_fam |
family describing g |
pi_guess |
pilot guess for pi |
m_intercept_guess |
pilot guess for m_intercept |
m_perturbation_guess |
pilot guess for m_perturbation |
m_covariate_coefs_guess |
pilot guess for m_covariate_coefficients |
g_intercept_guess |
pilot guess for g_intercept |
g_perturbation_guess |
pilot guess for g_perturbation |
g_covariate_coefs_guess |
pilot guess for g_covariate_coefs |
covariate_matrix |
the matrix of covariates; NULL if there are no covariates. |
m_offset |
offsets for m |
g_offset |
offsets for g |
ep_tol |
(optional) EM convergence threshold |
max_it |
(optional) maximum number of EM iterations |
the fitted GLM-EIV object.
set.seed(4)
m_fam <- g_fam <- augment_family_object(poisson())
n <- 5000
lib_size <- rpois(n = n, lambda = 5000)
m_offsets <- g_offsets <- log(lib_size)
pi <- 0.3
m_intercept <- log(0.05)
m_perturbation <- log(0.75)
g_intercept <- log(0.025)
g_perturbation <- log(1.4)
covariate_matrix <- data.frame(batch = rbinom(n = n, size = 1, prob = 0.5))
m_covariate_coefs <- log(0.9)
g_covariate_coefs <- log(1.1)
dat <- generate_full_data(m_fam = m_fam, m_intercept = m_intercept,
m_perturbation = m_perturbation, g_fam = g_fam, g_intercept = g_intercept,
g_perturbation = g_perturbation, pi = pi, n = n, B = 2,
covariate_matrix = covariate_matrix, m_covariate_coefs = m_covariate_coefs,
g_covariate_coefs = g_covariate_coefs, m_offset = m_offsets, g_offset = g_offsets)[[1]]
m <- dat$m
g <- dat$g
fit <- run_full_glmeiv_given_pilot_params(m = m, g = g, m_fam = m_fam, g_fam = g_fam,
pi_guess = 0.15, m_intercept_guess = log(0.1), m_perturbation_guess = log(1),
m_covariate_coefs_guess = log(1.4), g_intercept_guess = log(0.05),
g_perturbation_guess = log(1.4), g_covariate_coefs_guess = log(1.2),
covariate_matrix = covariate_matrix, m_offset = m_offsets, g_offset = g_offsets)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.