#' kmeansplotter
#'
#' Makes a k-means plot based on the TCA analysis run in tcaplot.R.
#' @param finalexp the cleaned rnaseq dataset
#' @keywords k-means plot, expression analysis
#' @examples
#' kmeansplotter()
#plot data as a k-means plot
kmeansplotter <- function(finalexp){
#set number of clusters
k <- 3
#set parameters for kmeans method and number of iterations
kmeansresult <- kmeans(finalexp, k, iter.max = 1000, nstart = 10, algorithm = c("Hartigan-Wong"), trace = F)
k.clusters <- kmeansresult$cluster
m <- as.factor(k.clusters)
#plot
plot(PCAresult$x[,pcs[1]], PCAresult$x[,pcs[2]], col = m, pch = 16, main = "K-means", xlab = paste("PC", pcs[1]), ylab = paste("PC", pcs[2]))
m.values <- as.factor (levels(m))
#make legend for different clusters
legend(legend = m.values, "topright", pch = 16, col = m.values)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.