## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE---------------------------------------------------------------
# # install the devtools package if not yet done:
# if (!require("devtools")){install.packages("devtools"); library(devtools)}
# if (!require("euptf2")){devtools::install_github("tkdweber/euptf2"); library(euptf2)}
## ----setup--------------------------------------------------------------------
# load the package:
library(euptf2)
## ----eval=FALSE---------------------------------------------------------------
# data(sample_data)
## ----eval=TRUE----------------------------------------------------------------
sample_data
## ----eval=FALSE---------------------------------------------------------------
# # import data from csv file:
# mydata <- read.csv("myworksheet.csv")
#
# # import data from xlsx file with package xlsx:
# # install the xlsx package if not yet done:
# if (!require("xlsx")){install.packages("xlsx"); library(xlsx)}
# # load the package:
# library("xlsx")
# # import data from xlsx file:
# mydata <- read.xlsx("myworkbook.xlsx", sheetName="myworksheet")
# # see ?read.xlsx for more options
## ----eval=TRUE----------------------------------------------------------------
# check which_PTF to use to predict THS based on the predictor variables available in sample_data
which_PTF(predictor= sample_data, target = c("THS"))
# check which_PTF to use to predict multiple soil hydraulic properties
which_PTF(predictor= sample_data, target = c("THS", "FC", "WP", "KS", "VG", "MVG"))
## ----eval=FALSE---------------------------------------------------------------
# data(suggested_PTF)
# suggested_PTF
## ----eval=TRUE----------------------------------------------------------------
# predict parameters of the van Genuchten model (VG)
pred_VG <- euptfFun(ptf = "PTF11", predictor = sample_data, target = "VG", query = "predictions")
pred_VG
# predict VG with predefined quantiles
pred_VG_q <- euptfFun(ptf = "PTF11", predictor = sample_data, target = "VG", query = "quantiles", quantiles = c(0.1, 0.5, 0.9))
pred_VG_q
# please note that output is list, can be formatted to data frame:
pred_VG_q.df <- as.data.frame(pred_VG_q)
# predict parameters of the Mualem-van Genuchten model (MVG)
pred_MVG <- euptfFun(ptf = "PTF05", predictor = sample_data, target = "MVG", query = "predictions")
pred_MVG
## ----eval=TRUE----------------------------------------------------------------
# predict saturated water content (THS)
pred_THS <- euptfFun(ptf = "PTF03", predictor = sample_data, target = "THS", query = "predictions")
pred_THS
# predict THS with predefined quantiles
pred_THS_q <- euptfFun(ptf = "PTF03", predictor = sample_data, target = "THS", query = "quantiles", quantiles = c(0.05, 0.5, 0.95))
pred_THS_q
# predict saturated hydraulic conductivity (KS)
pred_KS <- euptfFun(ptf = "PTF05", predictor = sample_data, target = "KS", query = "predictions")
pred_KS
## ----eval=FALSE---------------------------------------------------------------
# # example to save the predicted values to a csv file:
# write.csv(pred_THS, file = "pred_THS.csv", row.names = FALSE)
# # see ?write.csv for additional options
#
# # example to save predicted values to xlsx file:
# # install the openxlsx package if not yet done:
# if (!require("openxlsx")){install.packages("openxlsx"); library(openxlsx)}
# library(openxlsx)
# write.xlsx(pred_THS, file = "pred_THS.xlsx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.