Description Usage Arguments Value Note Author(s) See Also Examples
This function estimates one or more periodograms (spectral densities)
of the time series contained in an object of class Wave
or WaveMC
(or directly in a Wave file)
using a window running through the time series (possibly with overlapping).
It returns an object of class Wspec
.
1 2 3 4 5 6 7 8 9 | periodogram(object, ...)
## S4 method for signature 'WaveGeneral'
periodogram(object, width = length(object), overlap = 0,
starts = NULL, ends = NULL, taper = 0, normalize = TRUE,
frqRange = c(-Inf, Inf), ...)
## S4 method for signature 'character'
periodogram(object, width, overlap = 0, from = 1, to = Inf,
units = c("samples", "seconds", "minutes", "hours"),
downsample = NA, channel = c("left", "right"), pieces = 1, ...)
|
object |
An object of class |
width |
A window of width ‘ |
overlap |
The window can be applied by each overlapping |
starts |
Start number (in samples) for a window.
If not given, this value is derived from argument |
ends |
End number (in samples) for a window.
If not given, this value is derived from argument |
taper |
proportion of data to taper. See |
normalize |
Logical; if |
frqRange |
Numeric vector of two elements indicating minimum and maximum of the frequency range that is to be stored in the resulting object. This is useful to reduce memory consumption. |
from |
Where to start reading in the Wave file, in |
to |
Where to stop reading in the Wave file, in |
units |
Units in which |
downsample |
Sampling rate the object is to be downsampled to.
If |
channel |
Character, indicating whether the “left” or “right” channel should be extracted
(see |
pieces |
The Wave file will be read in in |
... |
Further arguments to be passed to the underlying function |
An object of class Wspec
is returned containing the following slots.
freq |
Vector of frequencies at which the spectral density is estimated.
See |
spec |
List of vectors or matrices of the |
kernel |
The kernel argument, or the kernel constructed from spans returned by |
df |
The distribution of the spectral density estimate can be approximated by a chi square distribution with
|
taper |
The value of the |
width |
The value of the |
overlap |
The value of the |
normalize |
The value of the |
starts |
If the argument |
stereo |
Always |
samp.rate |
Sampling rate of the underlying |
variance |
The variance of samples in each window, corresponding to amplitude / loudness of sound. |
energy |
The “energy” E, also an indicator for the amplitude / loudness of sound: E(x_I) := 20 * log_{10} sum_{j in I} |x_j|, where I indicates the interval I:= |
Those slots marked with “(1)” contain the information once, because it is unique for all periodograms of estimated by the function call.
Support for processing more than one channel of Wave
or WaveMC
objects has not yet been implemented.
Uwe Ligges ligges@statistik.tu-dortmund.de
for the resulting objects' class: Wspec
,
for plotting: plot-Wspec
,
for the underlying periodogram calculations: spec.pgram
,
for the input data class: Wave-class, Wave
, WaveMC-class, WaveMC
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # constructing a Wave object (1 sec.) containing sinus sound with 440Hz:
Wobj <- sine(440)
Wobj
# Calculate periodograms in windows of 4096 samples each - without
# any overlap - resulting in an Wspec object that is printed:
Wspecobj <- periodogram(Wobj, width = 4096)
Wspecobj
# Plot the first periodogram from Wspecobj:
plot(Wspecobj)
# Plot the third one and choose a reasonable xlim:
plot(Wspecobj, which = 3, xlim = c(0, 1000))
# Mark frequency that has been generated before:
abline(v = 440, col="red")
FF(Wspecobj) # all ~ 440 Hertz
noteFromFF(FF(Wspecobj)) # all diapason a
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.