Lrnr_ranger | R Documentation |
This learner provides fitting procedures for a faster implementation of
Random Forests, using the routines from ranger (described
in \insertCiteranger;textualsl3) through a call to the function
ranger
. Variable importance functionality is also
provided through invocation of the importance
method.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
num.trees = 500
: Number of trees to be used in growing the forest.
write.forest = TRUE
: If TRUE
, forest is stored, which is
required for prediction. Set to FALSE
to reduce memory usage if
downstream prediction is not intended.
importance = "none"
: Variable importance mode, one of "none",
"impurity", "impurity_corrected", "permutation". The "impurity" measure
is the Gini index for classification, the variance of the responses for
regression, and the sum of test statistics (for survival analysis, see
the splitrule
argument of ranger
).
num.threads = 1
: Number of threads.
...
: Other parameters passed to ranger
. See
its documentation for details.
Lrnr_randomForest for a similar learner using randomForest
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars)
# create task for prediction
mtcars_task <- sl3_Task$new(
data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"
),
outcome = "mpg"
)
# initialization, training, and prediction with the defaults
ranger_lrnr <- Lrnr_ranger$new()
ranger_fit <- ranger_lrnr$train(mtcars_task)
ranger_preds <- ranger_fit$predict()
# variable importance
ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected")
ranger_fit_importance <- ranger_lrnr_importance$train(mtcars_task)
ranger_importance <- ranger_fit_importance$importance()
# screening based on variable importance, example in glm pipeline
ranger_importance_screener <- Lrnr_screener_importance$new(
learner = ranger_lrnr_importance, num_screen = 3
)
glm_lrnr <- make_learner(Lrnr_glm)
ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr)
ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.