Lrnr_rpart: Learner for Recursive Partitioning and Regression Trees

Lrnr_rpartR Documentation

Learner for Recursive Partitioning and Regression Trees

Description

This learner uses rpart from the rpart package to fit recursive partitioning and regression trees.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list of learner functionality, see the complete documentation of Lrnr_base.

Parameters

  • factor_binary_outcome = TRUE: Logical indicating whether a binary outcome should be defined as a factor instead of a numeric. This only needs to be modified to FALSE when the user has a binary outcome and they would like to use the mean squared error (MSE) as the splitting metric.

  • ...: Other parameters to be passed directly to rpart (see its documentation for details), and additional arguments defined in Lrnr_base, such as formula.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm, Lrnr_caret, Lrnr_cv_selector, Lrnr_cv, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_gam, Lrnr_ga, Lrnr_gbm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree, Lrnr_glm, Lrnr_grfcate, Lrnr_grf, Lrnr_gru_keras, Lrnr_gts, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify, Lrnr_hts, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner, Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp_density, Lrnr_solnp, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
rpart_lrnr <- Lrnr_rpart$new()
set.seed(693)
rpart_fit <- rpart_lrnr$train(task)

tlverse/sl3 documentation built on Nov. 18, 2024, 12:46 a.m.