Lrnr_rugarch: Univariate GARCH Models

Lrnr_rugarchR Documentation

Univariate GARCH Models

Description

This learner supports autoregressive fractionally integrated moving average and various flavors of generalized autoregressive conditional heteroskedasticity models for univariate time-series. All the models are fit using ugarchfit.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list of learner functionality, see the complete documentation of Lrnr_base.

Parameters

  • variance.model: List containing variance model specification. This includes model, GARCH order, submodel, external regressors and variance tageting. Refer to ugarchspec for more information.

  • mean.model: List containing the mean model specification. This includes ARMA model, whether the mean should be included, and external regressors among others.

  • distribution.model: Conditional density to be used for the innovations.

  • start.pars:List of staring parameters for the optimization routine.

  • fixed.pars:List of parameters which are to be kept fixed during the optimization routine.

  • ...: Other parameters passed to ugarchfit.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm, Lrnr_caret, Lrnr_cv_selector, Lrnr_cv, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_gam, Lrnr_ga, Lrnr_gbm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree, Lrnr_glm, Lrnr_grfcate, Lrnr_grf, Lrnr_gru_keras, Lrnr_gts, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify, Lrnr_hts, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner, Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp_density, Lrnr_solnp, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)
library(data.table)
data(bsds)

# make folds appropriate for time-series cross-validation
folds <- make_folds(bsds,
  fold_fun = folds_rolling_window, window_size = 500,
  validation_size = 100, gap = 0, batch = 50
)

# build task by passing in external folds structure
task <- sl3_Task$new(
  data = bsds,
  folds = folds,
  covariates = c(
    "weekday", "temp"
  ),
  outcome = "cnt"
)

# create tasks for taining and validation
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

# instantiate learner, then fit and predict
HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105)
HarReg_fit <- HarReg_learner$train(train_task)
HarReg_preds <- HarReg_fit$predict(valid_task)

tlverse/sl3 documentation built on Nov. 18, 2024, 12:46 a.m.