Lrnr_screener_augment | R Documentation |
This learner augments a set of screened covariates with covariates that should be included by default, even if the screener did not select them.
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
screener
An instantiated screener.
default_covariates
Vector of covariate names to be automatically added to the vector selected by the screener, regardless of whether or not these covariates were selected by the screener.
...
Other parameters passed to screener
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table)
# load example data
data(cpp_imputed)
setDT(cpp_imputed)
cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))]
covars <- c(
"apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs",
"sexn"
)
outcome <- "haz"
# create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),
covariates = covars,
outcome = outcome
)
screener_cor <- make_learner(
Lrnr_screener_correlation,
type = "rank",
num_screen = 2
)
screener_augment <- Lrnr_screener_augment$new(screener_cor, covars)
screener_fit <- screener_augment$train(task)
selected <- screener_fit$fit_object$selected
screener_selected <- screener_fit$fit_object$screener_selected
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.