#' Bound Predictions
#'
#' This learner bounds predictions. Intended for use in a pipeline.
#'
#' @docType class
#'
#' @importFrom R6 R6Class
#'
#' @export
#'
#' @keywords data
#'
#' @return Learner object with methods for training and prediction. See
#' \code{\link{Lrnr_base}} for documentation on learners.
#'
#' @format \code{\link{R6Class}} object.
#'
#' @family Learners
#'
#' @section Parameters:
#' \describe{
#' \item{\code{bound = .005}}{Either a length two vector of c(lower,upper) or a
#' lower bound, where the upper is then 1 - lower}
#' \item{\code{...}}{Not currently used.}
#' }
#'
#
Lrnr_transform_outcome <- R6Class(
classname = "Lrnr_transform_outcome",
inherit = Lrnr_base, portable = TRUE,
class = TRUE,
public = list(
initialize = function(transform, inverse_transform, learner, ...) {
params <- args_to_list()
super$initialize(params = params, ...)
private$.name = sprintf("%s_transformed", learner$name)
},
predict_fold = function(task = NULL, fold_number = "validation") {
trans_task <- private$.make_trans_task(task)
preds <- self$fit_object$learner$predict_fold(trans_task, fold_number)
trans_preds <- self$params$inverse_transform(preds)
return(trans_preds)
}
),
private = list(
.properties = c(
"continuous", "binomial", "categorical", "weights"
),
.make_trans_task = function(task){
trans_dt <- data.table(outcome_trans=self$params$transform(task$Y))
new_columns <- task$add_columns(trans_dt)
trans_task <- task$next_in_chain(column_names=new_columns,
outcome = "outcome_trans")
return(trans_task)
},
.train_sublearners = function(task){
mtt <- private$.make_trans_task
delayed_trans_task <- delayed::delayed_fun(mtt)(task)
delayed_fit <- sl3::delayed_learner_train(self$params$learner,delayed_trans_task)
return(delayed_fit)
},
.train = function(task, sublearners) {
fit <- sublearners
fit_object <- self$params
fit_object$learner <- fit
return(fit_object)
},
.predict = function(task = NULL) {
trans_task <- private$.make_trans_task(task)
preds <- self$fit_object$learner$predict(trans_task)
trans_preds <- self$params$inverse_transform(preds)
return(trans_preds)
},
.name = "transform"
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.