tmle3_Spec_mopttx_blip_revere | R Documentation |
The functions contained in the class define a TMLE for the Mean Under the Optimal Individualized Rule with Categorical Treatment, learned and estimated under Revere CV-TMLE. For learning the Optimal Rule, see 'Optimal_Rule_Revere' class.
An R6Class
object inheriting from
tmle3_Spec
.
A tmle3
object inheriting from tmle3_Spec
with
methods for obtaining the TMLE for the Mean Under the Optimal Individualized Rule.
For a full list of the available functionality, see the complete documentation of
tmle3_Spec
.
- V
: User-specified list of covariates used to define the rule.
- type
: Blip type, corresponding to different ways of defining the
reference category in learning the blip; mostly applies to categorical treatment.
Available categories include "blip1" (reference level of treatment), "blip2"
(average level of treatment) and "blip3" (weighted average level of treatment).
- learners
: List of user-defined learners for relevant parts of the
likelihood.
- maximize
: Should the average outcome be maximized of minimized? Default is
maximize=TRUE.
- complex
: If TRUE
, the returned mean under the Optimal Rule is based on the
full set of covariates provided by the user (parameter "V"). If FALSE
, simpler rules
(including the static rules), are evaluated as well; the returned mean under the Optimal
Rule is then a potentially more parsimonious rule, if the mean performance is similar.
- realistic
: If TRUE
, the optimal rule returned takes into account the
probability of treatment given covariates.
- resource
: Indicates the percent of initially estimated individuals who should be given
treatment that get treatment, based on their blip estimate. If resource = 1 all estimated
individuals to benefit from treatment get treatment, if resource = 0 none get treatment.
- interpret
: If TRUE
, returns a HAL fit of the blip, explaining the rule.
- reference
: reference category for blip1. Default is the smallest numerical category or factor.
tmle3::tmle3_Spec
-> tmle3_Spec_mopttx_blip_revere
new()
tmle3_Spec_mopttx_blip_revere$new( V = NULL, type, learners, maximize = TRUE, complex = TRUE, realistic = FALSE, resource = 1, interpret = FALSE, likelihood_override = NULL, reference = NULL, ... )
vals_from_factor()
tmle3_Spec_mopttx_blip_revere$vals_from_factor(x)
make_tmle_task()
tmle3_Spec_mopttx_blip_revere$make_tmle_task(data, node_list, ...)
make_initial_likelihood()
tmle3_Spec_mopttx_blip_revere$make_initial_likelihood( tmle_task, learner_list = NULL )
predict_rule()
tmle3_Spec_mopttx_blip_revere$predict_rule(tmle_task_new)
make_rules()
tmle3_Spec_mopttx_blip_revere$make_rules(V)
make_est_fin()
tmle3_Spec_mopttx_blip_revere$make_est_fin(fit, max, p.value = 0.35)
set_opt()
tmle3_Spec_mopttx_blip_revere$set_opt(opt)
set_rule()
tmle3_Spec_mopttx_blip_revere$set_rule(rule)
data_adapt_psi()
tmle3_Spec_mopttx_blip_revere$data_adapt_psi(data_tda, node_list, Qbar0)
get_blip_fit()
tmle3_Spec_mopttx_blip_revere$get_blip_fit()
get_blip_pred()
tmle3_Spec_mopttx_blip_revere$get_blip_pred(tmle_task, fold_number = "full")
make_params()
tmle3_Spec_mopttx_blip_revere$make_params(tmle_task, likelihood)
clone()
The objects of this class are cloneable with this method.
tmle3_Spec_mopttx_blip_revere$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run: library(sl3) library(tmle3) library(data.table) data("data_bin") data <- data_bin Q_lib <- make_learner_stack("Lrnr_mean", "Lrnr_glm_fast") g_lib <- make_learner_stack("Lrnr_mean", "Lrnr_glm_fast") B_lib <- make_learner_stack("Lrnr_glm_fast", "Lrnr_xgboost") metalearner <- make_learner(Lrnr_nnls) Q_learner <- make_learner(Lrnr_sl, Q_lib, metalearner) g_learner <- make_learner(Lrnr_sl, g_lib, metalearner) B_learner <- make_learner(Lrnr_sl, B_lib, metalearner) learner_list <- list(Y = Q_learner, A = g_learner, B = B_learner) node_list <- list(W = c("W1", "W2", "W3"), A = "A", Y = "Y") tmle_spec <- tmle3_mopttx_blip_revere( V = c("W1", "W2", "W3"), type = "blip1", learners = learner_list, maximize = TRUE, complex = TRUE, realistic = TRUE ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.