| tmle3_Spec_mopttx_blip_revere | R Documentation |
The functions contained in the class define a TMLE for the Mean Under the Optimal Individualized Rule with Categorical Treatment, learned and estimated under Revere CV-TMLE. For learning the Optimal Rule, see 'Optimal_Rule_Revere' class.
An R6Class object inheriting from
tmle3_Spec.
A tmle3 object inheriting from tmle3_Spec with
methods for obtaining the TMLE for the Mean Under the Optimal Individualized Rule.
For a full list of the available functionality, see the complete documentation of
tmle3_Spec.
- V: User-specified list of covariates used to define the rule.
- type: Blip type, corresponding to different ways of defining the
reference category in learning the blip; mostly applies to categorical treatment.
Available categories include "blip1" (reference level of treatment), "blip2"
(average level of treatment) and "blip3" (weighted average level of treatment).
- learners: List of user-defined learners for relevant parts of the
likelihood.
- maximize: Should the average outcome be maximized of minimized? Default is
maximize=TRUE.
- complex: If TRUE, the returned mean under the Optimal Rule is based on the
full set of covariates provided by the user (parameter "V"). If FALSE, simpler rules
(including the static rules), are evaluated as well; the returned mean under the Optimal
Rule is then a potentially more parsimonious rule, if the mean performance is similar.
- realistic: If TRUE, the optimal rule returned takes into account the
probability of treatment given covariates.
- resource: Indicates the percent of initially estimated individuals who should be given
treatment that get treatment, based on their blip estimate. If resource = 1 all estimated
individuals to benefit from treatment get treatment, if resource = 0 none get treatment.
- interpret: If TRUE, returns a HAL fit of the blip, explaining the rule.
- reference: reference category for blip1. Default is the smallest numerical category or factor.
tmle3::tmle3_Spec -> tmle3_Spec_mopttx_blip_revere
new()tmle3_Spec_mopttx_blip_revere$new( V = NULL, type, learners, maximize = TRUE, complex = TRUE, realistic = FALSE, resource = 1, interpret = FALSE, likelihood_override = NULL, reference = NULL, ... )
vals_from_factor()tmle3_Spec_mopttx_blip_revere$vals_from_factor(x)
make_tmle_task()tmle3_Spec_mopttx_blip_revere$make_tmle_task(data, node_list, ...)
make_initial_likelihood()tmle3_Spec_mopttx_blip_revere$make_initial_likelihood( tmle_task, learner_list = NULL )
predict_rule()tmle3_Spec_mopttx_blip_revere$predict_rule(tmle_task_new)
make_rules()tmle3_Spec_mopttx_blip_revere$make_rules(V)
make_est_fin()tmle3_Spec_mopttx_blip_revere$make_est_fin(fit, max, p.value = 0.35)
set_opt()tmle3_Spec_mopttx_blip_revere$set_opt(opt)
set_rule()tmle3_Spec_mopttx_blip_revere$set_rule(rule)
data_adapt_psi()tmle3_Spec_mopttx_blip_revere$data_adapt_psi(data_tda, node_list, Qbar0)
get_blip_fit()tmle3_Spec_mopttx_blip_revere$get_blip_fit()
get_blip_pred()tmle3_Spec_mopttx_blip_revere$get_blip_pred(tmle_task, fold_number = "full")
make_params()tmle3_Spec_mopttx_blip_revere$make_params(tmle_task, likelihood)
clone()The objects of this class are cloneable with this method.
tmle3_Spec_mopttx_blip_revere$clone(deep = FALSE)
deepWhether to make a deep clone.
## Not run:
library(sl3)
library(tmle3)
library(data.table)
data("data_bin")
data <- data_bin
Q_lib <- make_learner_stack("Lrnr_mean", "Lrnr_glm_fast")
g_lib <- make_learner_stack("Lrnr_mean", "Lrnr_glm_fast")
B_lib <- make_learner_stack("Lrnr_glm_fast", "Lrnr_xgboost")
metalearner <- make_learner(Lrnr_nnls)
Q_learner <- make_learner(Lrnr_sl, Q_lib, metalearner)
g_learner <- make_learner(Lrnr_sl, g_lib, metalearner)
B_learner <- make_learner(Lrnr_sl, B_lib, metalearner)
learner_list <- list(Y = Q_learner, A = g_learner, B = B_learner)
node_list <- list(W = c("W1", "W2", "W3"), A = "A", Y = "Y")
tmle_spec <- tmle3_mopttx_blip_revere(
V = c("W1", "W2", "W3"),
type = "blip1", learners = learner_list, maximize = TRUE,
complex = TRUE, realistic = TRUE
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.