tmle3_Spec_mopttx_vim | R Documentation |
The functions contained in the class define a Variable Importance metric for the TMLE of the Mean Under the Optimal Individualized Rule with Categorical Treatment, learned and estimated under Revere CV-TMLE. For learning the Optimal Rule, see 'Optimal_Rule_Revere' class.
An R6Class
object inheriting from
tmle3_Spec
.
A tmle3 object inheriting from tmle3_Spec
with
methods for obtaining the Variable Importance metric for the TMLE of the
Mean Under the Optimal Individualized Rule. For a full list of the available
functionality, see the complete documentation of tmle3_Spec
.
- V
: User-specified list of covariates used to define the rule.
- type
: Blip type, corresponding to different ways of defining the
reference category in learning the blip; mostly applies to categorical treatment.
Available categories include "blip1" (reference level of treatment), "blip2"
(average level of treatment) and "blip3" (weighted average level of treatment).
- method
: Either "SL" (for the TMLE estimate) or "Q" (for Q-learning).
- learners
: List of user-defined learners for relevant parts of the
likelihood.
- contrast
: Defined either a "linear" or "multiplicative" contrast for the delta method.
- maximize
: Should the average outcome be maximized of minimized? Default is
maximize=TRUE.
- complex
: If TRUE
, the returned mean under the Optimal Rule is based on the
full set of covariates provided by the user (parameter "V"). If FALSE
, simpler rules
(including the static rules), are evaluated as well; the returned mean under the Optimal
Rule is then a potentially more parsimonious rule, if the mean performance is similar.
- realistic
: If TRUE
, the optimal rule returned takes into account the
probability of treatment given covariates.
- resource
: Indicates the percent of initially estimated individuals who should be given
treatment that get treatment, based on their blip estimate. If resource = 1 all estimated
individuals to benefit from treatment get treatment, if resource = 0 none get treatment.
tmle3::tmle3_Spec
-> tmle3mopttx::tmle3_Spec_mopttx_blip_revere
-> tmle3_Spec_mopttx_vim
tmle3::tmle3_Spec$make_targeted_likelihood()
tmle3::tmle3_Spec$make_updater()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$data_adapt_psi()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$get_blip_fit()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$get_blip_pred()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$make_est_fin()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$make_initial_likelihood()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$make_rules()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$predict_rule()
tmle3mopttx::tmle3_Spec_mopttx_blip_revere$set_rule()
new()
tmle3_Spec_mopttx_vim$new( V = NULL, type = "blip2", method = "SL", learners = NULL, contrast = "linear", maximize = TRUE, complex = TRUE, realistic = FALSE, resource = 1, reference = NULL, ... )
vals_from_factor()
tmle3_Spec_mopttx_vim$vals_from_factor(x)
make_tmle_task()
tmle3_Spec_mopttx_vim$make_tmle_task(data, node_list, ...)
set_opt()
tmle3_Spec_mopttx_vim$set_opt(opt)
make_params()
tmle3_Spec_mopttx_vim$make_params(tmle_task, likelihood)
clone()
The objects of this class are cloneable with this method.
tmle3_Spec_mopttx_vim$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run: library(sl3) library(tmle3) library(data.table) data("data_cat_vim") data <- data_cat_vim data$A <- as.integer(data$A) lrn1 <- Lrnr_mean$new() lrn2 <- Lrnr_glm_fast$new() lrn3 <- Lrnr_glmnet$new() Q_learner <- Lrnr_sl$new(learners = list(lrn1, lrn2, lrn3), metalearner = Lrnr_nnls$new() ) mn_metalearner <- make_learner(Lrnr_solnp, loss_function = loss_loglik_multinomial, learner_function = metalearner_linear_multinomial ) g_learner <- make_learner(Lrnr_sl, list(lrn1, lrn3), mn_metalearner) b_learner <- create_mv_learners(learners = list(lrn1, lrn2)) learner_list <- list(Y = Q_learner, A = g_learner, B = b_learner) node_list <- list(W = c("W2", "W3", "W4"), A = c("A", "W1"), Y = "Y") tmle_spec <- tmle3_mopttx_vim( V = "W3", learners = learner_list, type = "blip2", contrast = "multiplicative", maximize = FALSE, method = "SL", complex = TRUE, realistic = FALSE ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.