#' Parameter for Linear Working Marginal Structural Model
#'
#' Parameter definition for targeting the parameters of a linear working
#' marginal structural model (MSM): EY = beta0 + beta1 * delta, in order to
#' summarize the variable importance results of a grid of shift interventions.
#'
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @importFrom tmle3 Param_base
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_MSM_linear, observed_likelihood,
#' intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}}
#' corresponding to the observed likelihood.}
#' \item{\code{intervention_list}}{A list of objects inheriting from
#' \code{\link{LF_base}}, representing the intervention.}
#' \item{\code{...}}{Not currently used.}
#' \item{\code{outcome_node}}{character, the name of the node that should
#' be treated as the outcome.}
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood}}{the counterfactual likelihood for this
#' treatment.}
#' \item{\code{intervention_list}}{A list of objects inheriting from
#' \code{\link{LF_base}}, representing the intervention.}
#' }
#'
#' @export
Param_MSM_linear <- R6Class(
classname = "Param_MSM_linear",
portable = TRUE,
class = TRUE,
inherit = tmle3::Param_delta,
public = list(
clever_covariates = function(tmle_task = NULL, fold_number = "full") {
# use training task if none provided
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- names(self$intervention_list)
# loop to compute estimates of parameter and influence function
estimates <- lapply(
self$parent_parameters,
function(tmle_param) {
tmle_param$estimates(tmle_task, fold_number)
}
)
# re-organize output from above loop
psis <- lapply(estimates, `[[`, "psi")
eifs <- lapply(estimates, `[[`, "IC")
hn_msm_coef <- self$delta_param$hn(x = psis, dx = eifs)
# combine clever covariates from individual parameters to target MSM
hn_params_list <-
lapply(self$parent_parameters, function(tmle_param) {
as.numeric(tmle_param$clever_covariates(tmle_task, fold_number)$Y)
})
hn_params_mat <- do.call(cbind, hn_params_list)
# build auxiliary covariates for each MSM parameter
hn_msm <- tcrossprod(hn_params_mat, hn_msm_coef)
return(list(Y = hn_msm))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.