#' Cluster Assignment of Documents/Text Elements
#'
#' Cluster assignment of documents/text elements.
#'
#' @param x a \code{kmeans_cluster} object.
#' @param \ldots ignored.
#' @return Returns an \code{assign_cluster} object; a named vector of cluster
#' assignments with documents as names. The object also contains the original
#' \code{data_storage} object and a \code{join} function. \code{join} is a
#' function (a closure) that captures information about the \code{assign_cluster}
#' that makes rejoining to the original data set simple. The user simply
#' supplies the original data set as an argument to \code{join}
#' (\code{attributes(FROM_ASSIGN_CLUSTER)$join(ORIGINAL_DATA)}).
#' @rdname assign_cluster
#' @export
#' @examples
#' library(dplyr)
#'
#' x <- with(
#' presidential_debates_2012,
#' data_store(dialogue, paste(person, time, sep = "_"))
#' )
#'
#' kmeans_cluster(x, k=6) %>%
#' assign_cluster()
#'
#' x2 <- presidential_debates_2012 %>%
#' with(data_store(dialogue)) %>%
#' kmeans_cluster(k = 55)
#'
#' ca <- assign_cluster(x2)
#' summary(ca)
#'
#' ## add to original data
#' attributes(ca)$join(presidential_debates_2012)
#'
#' ## split text into clusters
#' get_text(ca)
assign_cluster <- function(x, ...){
UseMethod("assign_cluster")
}
#' @export
#' @rdname assign_cluster
#' @method assign_cluster default
assign_cluster.default <- function(x, ...){
hclustext::assign_cluster(x=x, ...)
}
#' @export
#' @rdname assign_cluster
#' @method assign_cluster kmeans_cluster
assign_cluster.kmeans_cluster <- function(x, ...){
out <- x[['cluster']]
orig <- attributes(x)[['text_data_store']][['data']]
lens <- length(orig[['text']]) + length(orig[['removed']])
class(out) <- c("assign_cluster_kmeans","assign_cluster", class(out))
attributes(out)[["data_store"]] <- attributes(x)[["text_data_store"]]
attributes(out)[["model"]] <- x
attributes(out)[["join"]] <- function(x) {
if (nrow(x) != lens) warning(sprintf("original data had %s elements, `x` has %s", lens, nrow(x)))
dplyr::select(
dplyr::left_join(
dplyr::mutate(x, id_temporary = as.character(1:n())),
dplyr::tbl_df(textshape::bind_vector(out, 'id_temporary', 'cluster') )
),
-id_temporary
)
}
out
}
#' Prints an assign_cluster Object
#'
#' Prints an assign_cluster object
#'
#' @param x An assign_cluster object.
#' @param \ldots ignored.
#' @method print assign_cluster
#' @export
print.assign_cluster <- function(x, ...){
print(stats::setNames(as.integer(x), names(x)))
}
#' Summary of an assign_cluster Object
#'
#' Summary of an assign_cluster object
#'
#' @param object An assign_cluster object.
#' @param plot logical. If \code{TRUE} an accompanying bar plot is produced a
#' well.
#' @param \ldots ignored.
#' @method summary assign_cluster
#' @export
summary.assign_cluster <- function(object, plot = TRUE, ...){
count <- NULL
out <- textshape::bind_table(table(as.integer(object)), "cluster", "count")
if (isTRUE(plot)) print(termco::plot_counts(as.integer(object), item.name = "Cluster"))
dplyr::arrange(as.data.frame(out), dplyr::desc(count))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.