#' qdap: Quantitative Discourse Analysis Package
#'
#' This package automates many of the tasks associated with quantitative
#' discourse analysis of transcripts containing discourse. The package
#' provides parsing tools for preparing transcript data, coding tools and
#' analysis tools for richer understanding of the data. Many functions
#' allow the user to aggregate data by any number of grouping variables,
#' providing analysis and seamless integration with other R packages which
#' enable higher level analysis and visualization of text. This empowers
#' the researcher with more flexible, efficient and targeted methods and tools.
#'
#' @docType package
#' @name qdap
#' @aliases qdap package-qdap
NULL
#' Buckley & Salton Stopword List
#'
#' A stopword list containing a character vector of stopwords.
#'
#' @details \href{http://www.lextek.com/manuals/onix/stopwords2.html}{From Onix Text Retrieval Toolkit API Reference}:
#' "This stopword list was built by Gerard Salton and Chris Buckley for the
#' experimental SMART information retrieval system at Cornell University.
#' This stopword list is generally considered to be on the larger side and so
#' when it is used, some implementations edit it so that it is better suited
#' for a given domain and audience while others use this stopword list as it
#' stands."
#'
#' @note Reduced from the original 571 words to 546.
#'
#' @docType data
#' @keywords datasets
#' @name BuckleySaltonSWL
#' @usage data(BuckleySaltonSWL)
#' @format A character vector with 546 elements
#' @references \url{http://www.lextek.com/manuals/onix/stopwords2.html}
NULL
#' Fictitious Classroom Dialogue
#'
#' A fictitious dataset useful for small demonstrations.
#'
#' @details
#' \itemize{
#' \item person. Speaker
#' \item sex. Gender
#' \item adult. Dummy coded adult (0-no; 1-yes)
#' \item state. Statement (dialogue)
#' \item code. Dialogue coding scheme
#' }
#'
#' @docType data
#' @keywords datasets
#' @name DATA
#' @usage data(DATA)
#' @format A data frame with 11 rows and 5 variables
NULL
#' Fictitious Repeated Measures Classroom Dialogue
#'
#' A repeated measures version of the \code{\link[qdap]{DATA}} dataset.
#'
#' @details
#' \itemize{
#' \item day. Day of observation
#' \item class. Class period/subject of observation
#' \item person. Speaker
#' \item sex. Gender
#' \item adult. Dummy coded adult (0-no; 1-yes)
#' \item state. Statement (dialogue)
#' \item code. Dialogue coding scheme
#' }
#'
#' @docType data
#' @keywords datasets
#' @name DATA2
#' @usage data(DATA2)
#' @format A data frame with 74 rows and 7 variables
NULL
#' Nettalk Corpus Syllable Data Set
#'
#' A dataset containing syllable counts.
#'
#' @note This data set is based on the Nettalk Corpus but has some researcher
#' word deletions and additions based on the needs of the
#' \code{\link[qdap]{syllable.sum}} algorithm.
#'
#' @details
#' \itemize{
#' \item word. The word
#' \item syllables. Number of syllables
#' }
#'
#' @docType data
#' @keywords datasets
#' @name DICTIONARY
#' @usage data(DICTIONARY)
#' @format A data frame with 20137 rows and 2 variables
#' @references Sejnowski, T.J., and Rosenberg, C.R. (1987). "Parallel networks
#' that learn to pronounce English text" in Complex Systems, 1, 145-168.
#' Retrieved from: \url{http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)}
#'
#' \href{http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/nettalk/}{UCI Machine Learning Repository website}
NULL
#' Onix Text Retrieval Toolkit Stopword List 1
#'
#' A stopword list containing a character vector of stopwords.
#'
#' @details \href{http://www.lextek.com/manuals/onix/stopwords1.html}{From Onix Text Retrieval Toolkit API Reference}:
#' "This stopword list is probably the most widely used stopword list. It
#' covers a wide number of stopwords without getting too aggressive and
#' including too many words which a user might search upon."
#'
#' @note Reduced from the original 429 words to 404.
#'
#' @docType data
#' @keywords datasets
#' @name OnixTxtRetToolkitSWL1
#' @usage data(OnixTxtRetToolkitSWL1)
#' @format A character vector with 404 elements
#' @references \url{http://www.lextek.com/manuals/onix/stopwords1.html}
NULL
#' Fry's 100 Most Commonly Used English Words
#'
#' A stopword list containing a character vector of stopwords.
#'
#' @details Fry's Word List: The first 25 make up about one-third of all printed
#' material in English. The first 100 make up about one-half of all printed
#' material in English. The first 300 make up about 65\% of all printed
#' material in English."
#'
#'
#' @docType data
#' @keywords datasets
#' @name Top100Words
#' @usage data(Top100Words)
#' @format A character vector with 100 elements
#' @references Fry, E. B. (1997). Fry 1000 instant words. Lincolnwood, IL:
#' Contemporary Books.
NULL
#' Fry's 200 Most Commonly Used English Words
#'
#' A stopword list containing a character vector of stopwords.
#'
#' @details Fry's Word List: The first 25 make up about one-third of all printed
#' material in English. The first 100 make up about one-half of all printed
#' material in English. The first 300 make up about 65\% of all printed
#' material in English."
#'
#'
#' @docType data
#' @keywords datasets
#' @name Top200Words
#' @usage data(Top200Words)
#' @format A character vector with 200 elements
#' @references Fry, E. B. (1997). Fry 1000 instant words. Lincolnwood, IL:
#' Contemporary Books.
NULL
#' Fry's 25 Most Commonly Used English Words
#'
#' A stopword list containing a character vector of stopwords.
#'
#' @details Fry's Word List: The first 25 make up about one-third of all printed
#' material in English. The first 100 make up about one-half of all printed
#' material in English. The first 300 make up about 65\% of all printed
#' material in English."
#'
#' @docType data
#' @keywords datasets
#' @name Top25Words
#' @usage data(Top25Words)
#' @format A character vector with 25 elements
#' @references Fry, E. B. (1997). Fry 1000 instant words. Lincolnwood, IL:
#' Contemporary Books.
NULL
#' Small Abbreviations Data Set
#'
#' A dataset containing abbreviations and their qdap friendly form.
#'
#' @details
#' \itemize{
#' \item abv. Common transcript abbreviations
#' \item rep. qdap representation of those abbreviations
#' }
#'
#' @docType data
#' @keywords datasets
#' @name abbreviations
#' @usage data(abbreviations)
#' @format A data frame with 14 rows and 2 variables
NULL
#' Action Word List
#'
#' A dataset containing a vector of action words. This is a subset of the
#' \href{http://icon.shef.ac.uk/Moby/}{Moby project: Moby Part-of-Speech}.
#'
#' @details
#' \href{http://icon.shef.ac.uk/Moby/}{From Grady Ward's Moby project:}
#' "This second edition is a particularly thorough revision of the original Moby
#' Part-of-Speech. Beyond the fifteen thousand new entries, many thousand more
#' entries have been scrutinized for correctness and modernity. This is
#' unquestionably the largest P-O-S list in the world. Note that the many included
#' phrases means that parsing algorithms can now tokenize in units larger than a
#' single word, increasing both speed and accuracy."
#'
#' @docType data
#' @keywords datasets
#' @name action.verbs
#' @usage data(action.verbs)
#' @format A vector with 1569 elements
#' @references
#' \url{http://icon.shef.ac.uk/Moby/mpos.html}
NULL
#' Adverb Word List
#'
#' A dataset containing a vector of adverbs words. This is a subset of the
#' \href{http://icon.shef.ac.uk/Moby/}{Moby project: Moby Part-of-Speech}.
#'
#' @details
#' \href{http://icon.shef.ac.uk/Moby/}{From Grady Ward's Moby project:}
#' "This second edition is a particularly thorough revision of the original Moby
#' Part-of-Speech. Beyond the fifteen thousand new entries, many thousand more
#' entries have been scrutinized for correctness and modernity. This is
#' unquestionably the largest P-O-S list in the world. Note that the many included
#' phrases means that parsing algorithms can now tokenize in units larger than a
#' single word, increasing both speed and accuracy."
#'
#' @docType data
#' @keywords datasets
#' @name adverb
#' @usage data(adverb)
#' @format A vector with 13398 elements
#' @references
#' \url{http://icon.shef.ac.uk/Moby/mpos.html}
NULL
#' Contraction Conversions
#'
#' A dataset containing common contractions and their expanded form.
#'
#' @details
#' \itemize{
#' \item contraction. The contraction word.
#' \item expanded. The expanded form of the contraction.
#' }
#'
#' @docType data
#' @keywords datasets
#' @name contractions
#' @usage data(contractions)
#' @format A data frame with 65 rows and 2 variables
NULL
#' Emoticons Data Set
#'
#' A dataset containing common emoticons (adapted from
#' \href{http://www.lingo2word.com/lists/emoticon_listH.html}{Popular Emoticon List}).
#'
#' @details
#' \itemize{
#' \item meaning. The meaning of the emoticon
#' \item emoticon. The graphic representation of the emoticon
#' }
#'
#' @docType data
#' @keywords datasets
#' @name emoticon
#' @usage data(emoticon)
#' @format A data frame with 81 rows and 2 variables
#' @references
#' \url{http://www.lingo2word.com/lists/emoticon_listH.html}
NULL
#' Syllable Lookup Environment
#'
#' A dataset containing a syllable lookup environment (see \code{link[qdap]{DICTIONARY}}).
#'
#' @details For internal use.
#'
#' @docType data
#' @keywords datasets
#' @name env.syl
#' @usage data(env.syl)
#' @format A environment with the DICTIONARY data set.
#' @references
#' \href{http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/nettalk/}{UCI Machine Learning Repository website}
NULL
#' Amplifying Words
#'
#' A dataset containing a vector of words that amplify word meaning.
#'
#' @details
#' Valence shifters are words that alter or intensify the meaning of the polarized
#' words and include negators and amplifiers. Negators are, generally, adverbs
#' that negate sentence meaning; for example the word like in the sentence, "I do
#' like pie.", is given the opposite meaning in the sentence, "I do not like
#' pie.", now containing the negator not. Amplifiers are, generally, adverbs or
#' adjectives that intensify sentence meaning. Using our previous example, the
#' sentiment of the negator altered sentence, "I seriously do not like pie.", is
#' heightened with addition of the amplifier seriously.
#'
#' @docType data
#' @keywords datasets
#' @name increase.amplification.words
#' @usage data(increase.amplification.words)
#' @format A vector with 32 elements
NULL
#' Interjections
#'
#' A dataset containing a character vector of common interjections.
#'
#' @docType data
#' @keywords datasets
#' @name interjections
#' @usage data(interjections)
#' @format A character vector with 139 elements
#' @references
#' \url{http://www.vidarholen.net/contents/interjections/}
NULL
#' Romeo and Juliet: Act 1 Dialogue Merged with Demographics
#'
#' A dataset containing act 1 of Romeo and Juliet with demographic information.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item sex. Gender
#' \item fam.aff. Family affiliation of character
#' \item died. Dummy coded death variable (0-no; 1-yes); if yes the character
#' dies in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name mraja1
#' @usage data(mraja1)
#' @format A data frame with 235 rows and 5 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 1 Dialogue Merged with Demographics and Split
#'
#' A dataset containing act 1 of Romeo and Juliet with demographic information
#' and turns of talk split into sentences.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item tot.
#' \item sex. Gender
#' \item fam.aff. Family affiliation of character
#' \item died. Dummy coded death variable (0-no; 1-yes); if yes the character
#' dies in the play
#' \item dialogue. The spoken dialogue
#' \item stem.text.
#' }
#'
#' @docType data
#' @keywords datasets
#' @name mraja1spl
#' @usage data(mraja1spl)
#' @format A data frame with 508 rows and 7 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Negating Words
#'
#' A dataset containing a vector of words that negate word meaning.
#'
#' @details
#' Valence shifters are words that alter or intensify the meaning of the polarized
#' words and include negators and amplifiers. Negators are, generally, adverbs
#' that negate sentence meaning; for example the word like in the sentence, "I do
#' like pie.", is given the opposite meaning in the sentence, "I do not like
#' pie.", now containing the negator not. Amplifiers are, generally, adverbs or
#' adjectives that intensify sentence meaning. Using our previous example, the
#' sentiment of the negator altered sentence, "I seriously do not like pie.", is
#' heightened with addition of the amplifier seriously.
#'
#' @docType data
#' @keywords datasets
#' @name negation.words
#' @usage data(negation.words)
#' @format A vector with 16 elements
NULL
#' Negative Words
#'
#' A dataset containing a vector of negative words.
#'
#' @details
#' A sentence containing more negative words would be deemed a negative sentence,
#' whereas a sentence containing more positive words would be considered positive.
#'
#' @docType data
#' @keywords datasets
#' @name negative.words
#' @usage data(negative.words)
#' @format A vector with 4783 elements
#' @references Hu, M., & Liu, B. (2004). Mining opinion features in customer
#' reviews. National Conference on Artificial Intelligence.
#'
#' \url{http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html}
NULL
#' Positive Words
#'
#' A dataset containing a vector of positive words.
#'
#' @details
#' A sentence containing more negative words would be deemed a negative sentence,
#' whereas a sentence containing more positive words would be considered positive.
#'
#' @docType data
#' @keywords datasets
#' @name positive.words
#' @usage data(positive.words)
#' @format A vector with 2006 elements
#' @references Hu, M., & Liu, B. (2004). Mining opinion features in customer
#' reviews. National Conference on Artificial Intelligence.
#'
#' \url{http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html}
NULL
#' Preposition Words
#'
#' A dataset containing a vector of common prepositions.
#'
#'
#' @docType data
#' @keywords datasets
#' @name preposition
#' @usage data(preposition)
#' @format A vector with 162 elements
NULL
#' Romeo and Juliet (Unchanged & Complete)
#'
#' A dataset containing the original transcript from Romeo and Juliet as it was
#' scraped from: \url{http://shakespeare.mit.edu/romeo_juliet/full.html}.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' \item act. The act (akin to repeated measures)
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj
#' @usage data(raj)
#' @format A data frame with 840 rows and 3 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 1
#'
#' A dataset containing Romeo and Juliet: Act 1.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.act.1
#' @usage data(raj.act.1)
#' @format A data frame with 235 rows and 2 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 2
#'
#' A dataset containing Romeo and Juliet: Act 2.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.act.2
#' @usage data(raj.act.2)
#' @format A data frame with 205 rows and 2 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 3
#'
#' A dataset containing Romeo and Juliet: Act 3.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.act.3
#' @usage data(raj.act.3)
#' @format A data frame with 197 rows and 2 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 4
#'
#' A dataset containing Romeo and Juliet: Act 4.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.act.4
#' @usage data(raj.act.4)
#' @format A data frame with 115 rows and 2 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet: Act 5
#'
#' A dataset containing Romeo and Juliet: Act 5.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item dialogue. The spoken dialogue
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.act.5
#' @usage data(raj.act.5)
#' @format A data frame with 88 rows and 2 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet Demographics
#'
#' A dataset containing Romeo and Juliet demographic information for the
#' characters.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item sex. Gender
#' \item fam.aff. Family affiliation of character
#' \item died. Dummy coded death variable (0-no; 1-yes); if yes the character
#' dies in the play
#' }
#'
#' @docType data
#' @keywords datasets
#' @name raj.demographics
#' @usage data(raj.demographics)
#' @format A data frame with 34 rows and 4 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet Split in Parts of Speech
#'
#' A dataset containing a list from \code{\link[qdap]{pos}} using the
#' \code{\link[qdap]{raj}} data set (see \code{\link[qdap]{pos}} for more
#' information).
#'
#' @details
#' \describe{
#' \item{text}{The original text}
#' \item{POStagged}{The original words replaced with parts of speech in context.}
#' \item{POSprop}{Dataframe of the proportion of parts of speech by row.}
#' \item{POSfreq}{Dataframe of the frequency of parts of speech by row.}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name rajPOS
#' @usage data(rajPOS)
#' @format A list with 4 elements
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Romeo and Juliet (Complete & Split)
#'
#' A dataset containing the complete dialogue of Romeo and Juliet with turns of
#' talk split into sentences.
#'
#' @details
#' \itemize{
#' \item person. Character in the play
#' \item sex. Gender
#' \item fam.aff. Family affiliation of character
#' \item died. Dummy coded death variable (0-no; 1-yes); if yes the character
#' dies in the play
#' \item dialogue. The spoken dialogue
#' \item act. The act (akin to repeated measures)
#' \item stem.text. Text that has been stemmed
#' }
#'
#' @docType data
#' @keywords datasets
#' @name rajSPLIT
#' @usage data(rajSPLIT)
#' @format A data frame with 2151 rows and 8 variables
#' @references
#' \url{http://shakespeare.mit.edu/romeo_juliet/full.html}
NULL
#' Language Assessment by Mechanical Turk (labMT) Sentiment Words
#'
#' A dataset containing words, average happiness score (polarity), standard
#' deviations, and rankings.
#'
#' @details
#' \itemize{
#' \item word. The word.
#' \item happiness_rank. Happiness ranking of words based on average happiness
#' scores.
#' \item happiness_average. Average happiness score.
#' \item happiness_standard_deviation. Standard deviations of the happiness
#' scores.
#' \item twitter_rank. Twitter ranking of the word.
#' \item google_rank. Google ranking of the word.
#' \item nyt_rank. New York Times ranking of the word.
#' \item lyrics_rank. lyrics ranking of the word.
#' }
#'
#' @docType data
#' @keywords datasets
#' @name labMT
#' @usage data(labMT)
#' @format A data frame with 10222 rows and 8 variables
#' @references
#' Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A., & Danforth, C.M. (2011)
#' Temporal patterns of happiness and information in a global social network:
#' Hedonometrics and twitter. PLoS ONE 6(12): e26752.
#' doi:10.1371/journal.pone.0026752
#'
#' \url{http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0026752.s001}
NULL
#' Synonyms Data Set
#'
#' A dataset containing words and possible synonym matches.
#'
#' @details
#' \itemize{
#' \item word. The look up word.
#' \item match.string. A single string of possible matches.
#' }
#'
#' @note Intended for internal use with the \code{\link[qdap]{synonyms}} function.
#' @docType data
#' @keywords datasets
#' @name SYNONYM
#' @usage data(SYNONYM)
#' @format A data frame with 11050 rows and 2 variables
#' @references Scraped from:
#' \href{http://dictionary.reverso.net/english-synonyms/}{Reverso Online Dictionary}.
#' The word list fed to \href{http://dictionary.reverso.net/english-synonyms/}{Reverso}
#' is the unique words from the combination of \code{\link[qdap]{DICTIONARY}} and
#' \code{\link[qdap]{labMT}}.
NULL
#' Syllable Lookup Environment
#'
#' A dataset containing a synonym lookup environment (see
#' \code{link[qdap]{SYNONYM}}).
#'
#'
#' @docType data
#' @keywords datasets
#' @name env.syn
#' @usage data(env.syn)
#' @format A environment with
#' @references Scraped from:
#' \href{http://dictionary.reverso.net/english-synonyms/}{Reverso Online Dictionary}.
#' The word list fed to \href{http://dictionary.reverso.net/english-synonyms/}{Reverso}
#' is the unique words from the combination of \code{\link[qdap]{DICTIONARY}} and
#' \code{\link[qdap]{labMT}}.
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.