Description Usage Format Source Examples
2437 measurements from ICU
1 | data("Pittsburgh")
|
A workspace with clinical data.
Strong ion.
Strong ion.
Tension of pCO2 in mmHg.
Dataframe of data from ICU.
Cl in INPUT
Ring T, Kellum JA. Strong relationships in acid-base chemistry – modeling protons based on predictable concentra-tions of strong ions, total weak acid concentrations, and pCO2. Plos One 2016 Sep 15;11(9):e0162872. doi: 10.1371/journal.pone.0162872. eCollection 2016.PMID: 27631369
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | data(Pittsburgh)
pH_obs <- INPUT$pH
pHRES <- c();KpH <- c(); IonStr <- iterations <- CCCH <- RCCH <- II <-
UNCOR_pH <- c()
FFF <- array(rep(NA,6*length(INPUT[,1])),c(length(INPUT[,1]),6))
for (j in 1:length(INPUT[,1]))
{
if (NCOL(TOTAL)==1) {
TOT <- TOTAL[j]
} else {TOT <-TOTAL[j,] }
pHRES[j] <- with(INPUT,pH_general(Na=Na[j]*1e-3,K=K[j]*1e-3,Cl=Cl[j]*1e-3,
Lact=Lact[j]*1e-3,Ca=Ca[j],Mg=Mg[j],PCO2=PCO2[j],
Alb=ALB[j],WA=WA,TOT=TOT,A=0.5108,b=0.1)$pH)
FFF[j,] <- with(INPUT,pH_general(Na=Na[j]*1e-3,K=K[j]*1e-3,Cl=Cl[j]*1e-3,
Lact=Lact[j]*1e-3,Ca=Ca[j],Mg=Mg[j],PCO2=PCO2[j],
Alb=ALB[j],WA=WA,TOT=TOT,A=0.5108,b=0.1)$FF1)
KpH[j] <- with(INPUT,pH_general(Na=Na[j]*1e-3,K=K[j]*1e-3,Cl=Cl[j]*1e-3,
Lact=Lact[j]*1e-3,Ca=Ca[j],Mg=Mg[j],PCO2=PCO2[j],
Alb=ALB[j],WA=WA,TOT=TOT,A=0.5108,b=0.1)$KpH)
II[j] <- with(INPUT,pH_general(Na=Na[j]*1e-3,K=K[j]*1e-3,Cl=Cl[j]*1e-3,
Lact=Lact[j]*1e-3,Ca=Ca[j],Mg=Mg[j],PCO2=PCO2[j],
Alb=ALB[j],WA=WA,TOT=TOT,A=0.5108,b=0.1)$II)
UNCOR_pH[j] <- with(INPUT,pH_general(Na=Na[j]*1e-3,K=K[j]*1e-3,Cl=Cl[j]*1e-3,
Lact=Lact[j]*1e-3,Ca=Ca[j],Mg=Mg[j],PCO2=PCO2[j],
Alb=ALB[j],WA=WA,TOT=TOT,A=0.5108,b=0.1)$UNCOR_pH)
}
#ionic strength
summary(II)
summary(z5 <- lm(KpH~pH_obs))
dd <- data.frame(pH_obs,KpH)
XXX <- cor.test(pH_obs,KpH)$estimate
gg <- ggplot2::ggplot()
gg <- gg + ggplot2::geom_point(data=INPUT,ggplot2::aes(x=pH_obs,y=KpH))+
ggplot2::xlab("Measured pH")+ggplot2::ylab("Modeled pH")+
ggplot2::geom_abline(intercept=0,slope=1,col="red",size=2)+
ggplot2::geom_abline(intercept=0.69415,slope=0.90319,col="blue",size=2)+
ggplot2::ggtitle("Red line is x=y, blue line is fitted model\n
modeled pH is based on Davies activity coefficient")+
ggplot2::scale_x_continuous(limits=c(6.8,7.8))+
ggplot2::scale_y_continuous(limits=c(6.8,7.8))
gg
ddif1 <- KpH-pH_obs
ddif2 <- pHRES-pH_obs
ddif3 <- UNCOR_pH-pH_obs
summary(ddif1)
summary(ddif2)
summary(ddif3)
grp <- c(rep("blue",length(ddif1)),rep("red",length(ddif1)),
rep("green",length(ddif1)))
ssd <- data.frame(ddif=c(ddif1,ddif2,ddif3),col=grp)
ggplot2::ggplot(data=ssd,ggplot2::aes(x=ddif,fill=col))+
ggplot2::geom_density(alpha=0.2)+ggplot2::xlab("Difference: modeled-observed")+
ggplot2::labs(fill="Group")+
ggplot2::scale_fill_discrete(labels=c("Corrected pH difference",
"pH difference assuming ideal conditions","Uncorrected pH difference"))+
ggplot2::geom_vline(xintercept=0,linetype=2,size=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.