R/fpp.R

# Replacement for the acf() function.
Acf <- function(x, lag.max=NULL, type=c("correlation","partial"), plot=TRUE, main=NULL, ...)
{
  type <- match.arg(type)
  if(is.null(main))
    main <- paste("Series:",deparse(substitute(x)))
  if (is.null(lag.max))
    lag.max <- floor(10 * log10(length(x))) - (type!="partial")
  lag.max <- min(lag.max, length(x) - 1)
  if (lag.max < 0) 
        stop("'lag.max' must be at least 0")
  junk1 <- acf(c(x), lag.max=lag.max, type=type, plot=FALSE, ...)
  junk1$series <- deparse(substitute(x))
  if(!plot)
    return(junk1)
  if(type=="correlation")
	junk1$acf[1, 1, 1] <- 0
  ylim <- c(-1, 1) * 3/sqrt(length(x))
  ylim <- range(ylim, junk1$acf[,1,1])
  stats:::plot.acf(junk1, ylim = ylim, xlim = c(1, dim(junk1$acf)[1]-1), xaxt="n", main=main, ...)
  if(dim(junk1$acf)[1] < 25)
	axis(1,at=1:(dim(junk1$acf)[1]-1))
  else
	axis(1)
  if(type=="correlation")
	junk1$acf[1, 1, 1] <- 1
  return(invisible(junk1))
}

Pacf <- function (x, main=NULL, ...) 
{
  if(is.null(main))
      main <- paste("Series:",deparse(substitute(x)))
  Acf(x, type="partial", main=main, ...)
}


CV <- function(obj)
{
    n <- length(obj$residuals)
    k <- extractAIC(obj)[1]-1 # number of predictors (constant removed
    aic <- extractAIC(obj)[2]+2 # add 2 for the variance estimate
    aicc <- aic + 2*(k+2)*(k+3)/(n-k-1) 
    bic <- aic + (k+2)*(log(n)-2)
    cv <- mean((residuals(obj)/(1-hatvalues(obj)))^2)
    adjr2 <- summary(obj)$adj
    out <- c(cv,aic,aicc,bic,adjr2)
    names(out) <- c("CV","AIC","AICc","BIC","AdjR2")
    return(out)
}



ma <- function(x,order,centre=TRUE)
{
    tt <- 1:length(x)
    if(order%%2) #odd
    {
        temp1 <- ts(ksmooth(tt,x, x.points=tt,bandwidth = order-1)$y)
        j <- trunc(order/2)
        temp1[c(1:j,length(x)-(1:j)+1)] <- NA
    }
    else
    {
        temp1 <- ksmooth(tt,x, x.points=tt+0.5,bandwidth = order-1)$y
        j <- trunc(order/2)
        temp1[c(1:(j-1),length(x)-(1:j)+1)] <- NA
        if(centre)
        {
            temp2 <- ksmooth(tt,x, x.points=tt-0.5,bandwidth = order-1)$y
            temp2[c(1:j,length(x)-(1:(j-1))+1)] <- NA
            temp1 <- ts((temp1+temp2)/2)
        }
    }
    tsp(temp1) <- tsp(x)
    return(temp1)
}
ttnsdcn/forecast-package documentation built on June 1, 2019, 2:49 a.m.