# Load packages and functions ---------------------------------------------
library(fda.usc)
library(roahd)
library(energy)
library(entropy)
library(partykit)
library(cluster)
library(igraph)
library(NetworkDistance)
source("functions_v2.R")
source("node_v2.R")
source("split_v2.R")
source("party_v2.R")
source("plot_v2.R")
source("NKI_data_import.R")
# Import data -------------------------------------------------------------
nki <- generate_dataset(data_folder = 'NKI_Rockland/',
y_filename = 'NKI_clinical_information.txt',
y_column = 'WASI_FULL_4',
output_filename = 'NKIdata.RData',
output_folder = ".",
ext_save = FALSE)
# Dataset construction ----------------------------------------------------
# Response
resp <- nki$y
# Covariates list
cov.list <- list(lapply(nki$structural, function(g) igraph::graph_from_adjacency_matrix(g, weighted = T)),
lapply(nki$functional, function(g) igraph::graph_from_adjacency_matrix(g, weighted = T)))
# Energy Tree fit ---------------------------------------------------------
# Fit
set.seed(2948)
etree_fit <- etree(response = resp,
covariates = cov.list,
case.weights = NULL,
minbucket = 5,
alpha = 0.5,
R = 1000,
split.type = 'cluster',
coef.split.type = 'test')
# Plot
plot(etree_fit)
# Fitted values
y_fitted <- predict(etree_fit)
# Mean Error Prediction
(MEP_etree <- (sum((resp-y_fitted)^2)/length(resp))/(var(resp)))
# Root Mean Square Error
(MEP_etree <- sqrt(sum((resp-y_fitted)^2)/length(resp)))
# Mean Square Percentage Error
(MEP_etree <- sum(((resp-y_fitted)/resp)^2)/length(resp))
# Prediction --------------------------------------------------------------
# Predicted values
y_pred <- predict(etree_fit, newdata = cov.list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.