##########################################################################################
# Designed and developed by Tinniam V Ganesh
# Date : 5 Nov 2021
# Function: teamWicketsAcrossOversAllOppnAllMatches.R
# This function computes wickets across overs in all matches against all opposition in powerplay, middle and death overs
#
###########################################################################################
#' @title
#' Compute the wickets by team against all team in powerplay, middle and death overs in all matches
#'
#' @description
#' This function plots the wickets by team against all team in in powerplay, middle and death overs
#'
#' @usage
#' teamWicketsAcrossOversAllOppnAllMatches(matches,t1,plot=1)
#'
#' @param matches
#' The dataframe of the matches
#'
#' @param t1
#' The 1st team of the match
#'
#'
#' @param plot
#' Plot=1 (static), Plot=2(interactive)
#'
#' @return none
#'
#' @references
#' \url{https://cricsheet.org/}\cr
#' \url{https://gigadom.in/}\cr
#' \url{https://github.com/tvganesh/yorkrData/}
#'
#' @author
#' Tinniam V Ganesh
#' @note
#' Maintainer: Tinniam V Ganesh \email{tvganesh.85@gmail.com}
#'
#' @examples
#' \dontrun{
#'
#' # Plot tne match worm plot
#' teamWicketsAcrossOversAllOppnAllMatches(matches,t1,plot=1)
#' }
#' @seealso
#' \code{\link{getBatsmanDetails}}\cr
#' \code{\link{getBowlerWicketDetails}}\cr
#' \code{\link{batsmanDismissals}}\cr
#' \code{\link{getTeamBattingDetails}}\cr
#'
#' @export
#'
teamWicketsAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) {
team=ball=totalRuns=total=wicketPlayerOut=meanWickets=type=opposition=str_extract=t2=NULL
ggplotly=NULL
# Filter the performance of team1
a <-filter(matches,team==t1)
# Power play
a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9))
a2 <- select(a1,team,date,wicketPlayerOut)
a3 <- a2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n())
a4 = select(a3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count))
a4$opposition=t1
a4$type="1-Power Play"
# Middle overs
b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9))
b2 <- select(b1,team,date,wicketPlayerOut)
b3 <- b2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n())
b4 = select(b3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count))
b4$opposition=t1
b4$type="2-Middle Overs"
#Death overs
c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0))
c2 <- select(c1,team,date,wicketPlayerOut)
c3 <- c2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n())
c4 = select(c3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count))
c4$opposition=t1
c4$type="3-Death Overs"
m=rbind(a4,b4,c4)
plot.title= paste("Wickets across 20 overs by ",t1, "in all matches against all teams", sep=" ")
# Plot both lines
if(plot ==1){ #ggplot2
ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) +
geom_bar(stat="identity", position = "dodge") +
ggtitle(bquote(atop(.(plot.title),
atop(italic("Data source:http://cricsheet.org/"),""))))
}else { #ggplotly
g <- ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) +
geom_bar(stat="identity", position = "dodge") +
ggtitle(plot.title)
ggplotly(g)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.