tests/testthat/test-glm_sab.R

test_that("glm_sab_binomial runs", {
  expect_type(glm_sab(y = 0,
                      x_standardized = data.frame(x1 = 0, x2 = 1),
                      family = "binomial",
                      alpha_prior_mean = 0,
                      alpha_prior_cov = matrix(1),
                      aug_projection = matrix(1),
                      beta_orig_scale = 1,
                      beta_aug_scale = 1,
                      mc_warmup = 50,
                      mc_iter_after_warmup = 50,
                      only_prior = TRUE), "list")
})

test_that("glm_sab_gaussian runs", {
  expect_type(glm_sab(y = 0,
                      x_standardized = data.frame(x1 = 0, x2 = 1),
                      family = "gaussian",
                      alpha_prior_mean = 0,
                      alpha_prior_cov = matrix(1),
                      aug_projection = matrix(1),
                      beta_orig_scale = 1,
                      beta_aug_scale = 1,
                      mc_warmup = 50,
                      mc_iter_after_warmup = 50,
                      only_prior = TRUE), "list")
})

test_that("glm_sab_simple_binomial runs", {
  expect_type(glm_sab(y = 0,
                      x_standardized = data.frame(x1 = 0, x2 = 1),
                      family = "binomial",
                      alpha_prior_mean = 0,
                      alpha_prior_cov = matrix(1),
                      aug_projection = matrix(1),
                      beta_orig_scale = 1,
                      beta_aug_scale = 1,
                      phi_mean = 1,
                      phi_sd = 0,
                      eta_param = Inf,
                      mc_warmup = 50,
                      mc_iter_after_warmup = 50,
                      only_prior = TRUE), "list")
})

test_that("glm_sab_simple_gaussian runs", {
  expect_type(glm_sab(y = 0,
                      x_standardized = data.frame(x1 = 0, x2 = 1),
                      family = "gaussian",
                      alpha_prior_mean = 0,
                      alpha_prior_cov = matrix(1),
                      aug_projection = matrix(1),
                      beta_orig_scale = 1,
                      beta_aug_scale = 1,
                      phi_mean = 1,
                      phi_sd = 0,
                      eta_param = Inf,
                      mc_warmup = 50,
                      mc_iter_after_warmup = 50,
                      only_prior = TRUE), "list")
})
umich-biostatistics/AdaptiveBayesianUpdates documentation built on May 21, 2024, 5:29 a.m.