ers.aenet: ERS Adaptive Step

Description Usage Examples

View source: R/ers.R

Description

ERS Adaptive Step

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
ers.aenet(
  data.mod,
  y,
  lambda2.start,
  lambda2.adapt,
  nfolds,
  foldid,
  pf,
  pf2,
  method
)

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
x = metal
y = as.numeric(Y)
n = length(y)
lambda2.start = seq(0.00001, 0.01, by = 0.001)
lambda2.adapt = seq(0.00001, 0.01, by = 0.001)
nfolds = 5
foldid = matrix(data = c(sample(n), rep(1:nfolds, length = n)), nrow = n, ncol = 2)
foldid = foldid[order(foldid[,1]),]
foldid = foldid[,2]
data.mod = model.matrix(~-1+.^2, data = x) #, x^2, covs)
x.sq = x^2
names(x.sq) = paste0(names(x), '^2')
data.mod = cbind(data.mod, x.sq, covs)
#names(data.mod) # = c(names(x), paste0(names(x), '^2'), names(covs))
pf = c(rep(1, ncol(data.mod)))
pf2 = c(rep(1, ncol(data.mod)))
method = 'ls'
ers.aenet(data.mod, y, lambda2.start, lambda2.adapt, nfolds, foldid, pf, pf2, method)

umich-biostatistics/ers documentation built on Oct. 29, 2020, 8:15 a.m.