test_that("causality/wrapper_pn_ct/numeric_results", {
set.seed(42)
n <- 5000
n_col <- 3
k.m <- 5
quant <- .95
xi <- 0.1
beta <- 1.
n_sims <- 100
data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
svine_fit <- fit_markov_rvines(
data = data_it$data, k.markov=k.m,
copula_controls = list(family_set="archimedean", selcrit="mbicv")
)
v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
wrap_ct <- wrapper_pn_ct(v_sims, col_source=1, times=3, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_ct(rep(1, n_col))))
wrap_ct <- wrapper_pn_ct(v_sims, col_source=1, times=3:5, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_ct(rep(1, n_col))))
})
test_that("causality/wrapper_pn_tt/numeric_results", {
set.seed(42)
n <- 5000
n_col <- 3
k.m <- 5
quant <- .95
xi <- 0.1
beta <- 1.
n_sims <- 100
data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
svine_fit <- fit_markov_rvines(
data = data_it$data, k.markov=k.m,
copula_controls = list(family_set="archimedean", selcrit="mbicv")
)
v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
w_t <- rep(1, k.m-1)
wrap_tt <- wrapper_pn_tt(v_sims, col_target=3, col_source=1, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_tt(w_t)))
testthat::expect_equal(length(wrap_tt(w_t)), 1)
wrap_tt <- wrapper_pn_tt(v_sims, col_target=2:3, col_source=1, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_tt(w_t)))
testthat::expect_equal(length(wrap_tt(w_t)), 1)
})
test_that("causality/wrapper_pn_all/numeric_results", {
set.seed(42)
n <- 5000
n_col <- 3
k.m <- 5
quant <- .95
xi <- 0.1
beta <- 1.
n_sims <- 100
data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
svine_fit <- fit_markov_rvines(
data = data_it$data, k.markov=k.m,
copula_controls = list(family_set="archimedean", selcrit="mbicv")
)
v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
w_t <- rep(1, n_col*(k.m-1))
wrap_all <- wrapper_pn_all(v_sims, col_source=1, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_all(w_t)))
testthat::expect_equal(length(wrap_all(w_t)), 1)
wrap_tt <- wrapper_pn_all(v_sims, col_source=1, u0_source=.1, u0_target=.1)
testthat::expect_true(is.numeric(wrap_all(w_t)))
testthat::expect_equal(length(wrap_all(w_t)), 1)
})
test_that("causality/wrapper_pn_all/optim", {
set.seed(42)
n <- 5000
n_col <- 3
k.m <- 5
quant <- .95
xi <- 0.1
beta <- 1.
n_sims <- 100
data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
svine_fit <- fit_markov_rvines(
data = data_it$data, k.markov=k.m,
copula_controls = list(family_set="archimedean", selcrit="mbicv")
)
v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
wrap_all <- wrapper_pn_all(v_sims, col_source=1, u0_source=.1, u0_target=.1)
sc_all_optim <- optim(
par = rep(1, n_col * (k.m - 1)),
fn = function(w){-wrap_all(w)}
)
testthat::expect_equal(sc_all_optim$convergence, 0)
})
test_that("causality/wrapper_pn_ct/optim", {
set.seed(42)
n <- 5000
n_col <- 3
k.m <- 5
quant <- .95
xi <- 0.1
beta <- 1.
n_sims <- 100
data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
svine_fit <- fit_markov_rvines(
data = data_it$data, k.markov=k.m,
copula_controls = list(family_set="archimedean", selcrit="mbicv")
)
v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
wrap_ct <- wrapper_pn_ct(v_sims, times = 1, col_source=1, u0_source=.1, u0_target=.1)
sc_all_optim <- optim(
par = rep(1, n_col),
fn = function(w){-wrap_ct(w)}
)
testthat::expect_equal(sc_all_optim$convergence, 0)
})
# test_that("causality/cross/optim", {
# set.seed(42)
#
# n <- 5000
# n_col <- 3
# k.m <- 5
# quant <- .95
# xi <- 0.1
# beta <- 1.
#
# n_sims <- 100
#
# data <- matrix(evir::rgpd(n = n*n_col, xi = xi, beta = beta), ncol = n_col, nrow = n)
# data_it <- apply_integral_transform(data, u0s=rep(quant, n_col))
# svine_fit <- fit_markov_rvines(
# data = data_it$data, k.markov=k.m,
# copula_controls = list(family_set="archimedean", selcrit="mbicv")
# )
# v_sims <- model_simulation(n=n_sims, model=svine_fit, qrng=F)
#
# wrap_ct <- wrapper_pn_ct(v_sims, times = 1, col_source=1, u0_source=.1, u0_target=.1)
# sc_all_optim <- optim(
# par = rep(1, n_col),
# fn = function(w){-wrap_ct(w)}
# )
# testthat::expect_equal(sc_all_optim$convergence, 0)
# })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.