#' @title MLE of the KK-NNT in Normal distribution with equal variances
#'
#' @description Internal function. Not for users. Takes two numeric vectors of control and treatment results
#' and returns the MLE of the Kraemer & Kupfer's type NNT for Normal distribution with equal sd.
#' @param treat a numeric vector of the treatment arm results
#' @param control a numeric vector of the control arm results
#' @param d Cohen's delta MLE
#' @param s_ml pooled sd MLE
#' @param s_ml.bs BS of the pooled sd MLE
#' @param p_t.boot BS estimator of the sample proportion of success in the treatment arm
#' @param p_c.boot BS estimator of the sample proportion of success in the control arm
#' @param n_c number of observations in the control arm
#' @param n_t number of observations in the treatment arm
#' @keywords internal
#' @return MLE of the KK-NNT for the Normal distribution with equal sd
#######################################
### KK-NNT MLE NORM EQ VAR INCREASE ###
#######################################
nntkk_norm_eq_inc = function( treat, control, d, s_ml, p_t.boot, p_c.boot, s_ml.bs, n_c, n_t ) {
nnt.kk = ifelse( ( 2 * pnorm( d / sqrt ( 2 ) ) - 1 ) ^ ( - 1 ) > 0,
( 2 * pnorm( d / sqrt ( 2 ) ) - 1 ) ^ ( - 1 ),
Inf )
d.bs = ( p_t.boot$t[ ,3] - p_c.boot$t[ ,3] ) / s_ml.bs
nnt.kk.bs = ifelse( ( 2 * pnorm( d.bs / sqrt ( 2 ) ) - 1 ) ^ ( - 1 ) > 0,
( 2 * pnorm( d.bs / sqrt ( 2 ) ) - 1 ) ^ ( - 1 ),
Inf )
# DELTA's CI
phi_deriv = - ( nnt.kk ) ^ 2 * exp( - d ^ 2 / 4 ) / sqrt( pi )
# variance of nnt.kk
var_nnt.kk = ( n_t + n_c ) / ( 2 * n_t * n_c ) * ( phi_deriv ) ^ 2
# nnt.kk BS CI
ci.bs.nnt_k = c( max( quantile(nnt.kk.bs, .025), 1), quantile(nnt.kk.bs, .975) )
# nnt.kk function CI
ci.fun.nnt_k = c( max( ( 2 * pnorm( ( d + 1.96 * sqrt( ( n_t + n_c ) / ( 2 * n_t * n_c ) ) * sqrt( ( 4 + d ^ 2 ) / 2 ) ) / sqrt( 2 ) ) - 1 ) ^ ( - 1 ), 1),
( 2 * pnorm( ( d - 1.96 * sqrt( ( n_t + n_c ) / ( 2 * n_t * n_c ) ) * sqrt( ( 4 + d ^ 2 ) / 2 ) ) / sqrt( 2 ) ) - 1 ) ^ ( - 1 ) )
# nnt.kk delta CI
ci.d.nnt_k = c( max( nnt.kk - 1.96 * sqrt( var_nnt.kk ) * sqrt( ( 4 + d ^ 2 ) / 2 ), 1),
nnt.kk + 1.96 * sqrt( var_nnt.kk ) * sqrt( ( 4 + d ^ 2 ) / 2 ))
output = cbind( nnt.kk, t( ci.fun.nnt_k ), t( ci.d.nnt_k ), t( ci.bs.nnt_k ) )
colnames(output) = c( "KK-NNT",
"CI COHEN L", "CI COHEN U",
"CI DL L", "CI DL U",
"CI NBS L", "CI NBS U" )
return( output )
}
#######################################
### KK-NNT MLE NORM EQ VAR DECREASE ###
#######################################
nntkk_norm_eq_dec = function( treat, control, d, s_ml, p_t.boot, p_c.boot, s_ml.bs, n_c, n_t ) {
nnt.kk = ifelse( ( 1 - 2 * pnorm( d / sqrt ( 2 ) ) ) ^ ( - 1 ) > 0,
( 1 - 2 * pnorm( d / sqrt ( 2 ) ) ) ^ ( - 1 ),
Inf )
d.bs = ( p_t.boot$t[ ,3] - p_c.boot$t[ ,3] ) / s_ml.bs
nnt.kk.bs = ifelse( ( 1 - 2 * pnorm( d.bs / sqrt ( 2 ) ) ) ^ ( - 1 ) > 0,
( 1 - 2 * pnorm( d.bs / sqrt ( 2 ) ) ) ^ ( - 1 ),
Inf )
# DELTA's CI
phi_deriv = - ( nnt.kk ) ^ 2 * exp( - d ^ 2 / 4 ) / sqrt( pi )
# variance of nnt.kk
var_nnt.kk = ( n_t + n_c ) / ( 2 * n_t * n_c ) * ( phi_deriv ) ^ 2
# nnt.kk BS CI
ci.bs.nnt_k = c( max( quantile(nnt.kk.bs, .025), 1), quantile(nnt.kk.bs, .975) )
# nnt.kk function CI
ci.fun.nnt_k = c( max( - ( 2 * pnorm( ( d - 1.96 * sqrt( ( n_t + n_c ) / ( 2 * n_t * n_c ) ) * sqrt( ( 4 + d ^ 2 ) / 2 ) ) / sqrt( 2 ) ) - 1 ) ^ ( - 1 ), 1),
- ( 2 * pnorm( ( d + 1.96 * sqrt( ( n_t + n_c ) / ( 2 * n_t * n_c ) ) * sqrt( ( 4 + d ^ 2 ) / 2 ) ) / sqrt( 2 ) ) - 1 ) ^ ( - 1 ) )
# nnt.kk delta CI
ci.d.nnt_k = c( max( nnt.kk - 1.96 * sqrt( var_nnt.kk ) * sqrt( ( 4 + d ^ 2 ) / 2 ), 1),
nnt.kk + 1.96 * sqrt( var_nnt.kk ) * sqrt( ( 4 + d ^ 2 ) / 2 ) )
output = cbind( nnt.kk, t( ci.fun.nnt_k ), t( ci.d.nnt_k ), t( ci.bs.nnt_k ) )
colnames(output) = c( "KK-NNT",
"CI COHEN L", "CI COHEN U",
"CI DL L", "CI DL U",
"CI NBS L", "CI NBS U" )
return( output )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.