###############################################################################
# Author: Gina, PhD student w/Sotiris (vnichols@iastate.edu)
# Pat, field coordinator w/Sotiris
#
# Date created: May 18 2020
#
# Purpose: take user-interface excel sheet from Javed and create a tidy version
#
# Inputs: soilN2018, soilN2019
#
# Outputs:
#
# NOtes: Not sure what should be included. Compound columns better than separated?
#
#
# Date last modified:
###############################################################################
library(usethis)
library(dplyr)
library(readr)
library(readxl)
library(lubridate)
library(purrr)
library(tidyr)
library(stringr)
# 2018 --------------------------------------------------------------------
raw18 <- read_excel("data-raw/treatments/soilN2018.xlsx", sheet = "Treatments",
na = c("#N/A", "#VALUE", "."))
#--create a unique plot id
trts18 <-
raw18 %>%
rename(site = Location,
trt_name = trt,
crop_type = crop) %>%
mutate(year = 2018,
site_name = toupper(site),
site_id = str_sub(site, 1, 4),
trt_id = paste(crop_type, trt_name, sep = "_")) %>%
mutate(plot = paste0("P", toupper(plot)),
plot_id = paste(year, site_id, plot, sep = "_")) %>%
select(plot_id, trt_id, site)
# NOTE: not sure this is necessary
# Get the number of unique treatments in each year/site/crop
# Relabel treatments as 1, 2, 3, etc... w/in each year/site/crop
# Note, using rank is the best way to do this.
#
# arrange(year, site, crop, trt_name, rep) %>%
# group_by(year, site, crop) %>%
# mutate(trt_id = dense_rank(trt_name)) %>%
# select(year, site, plot, crop, trt_name, rep, trt_id) %>%
# ungroup() %>%
# mutate(site = str_to_upper(site))
# 2019 --------------------------------------------------------------------
raw19 <- read_excel("data-raw/treatments/soilN2019.xlsx", sheet = "Treatments",
na = c("#N/A", "#VALUE", "."))
#--create a unique plot id
#raw_trts <-
raw19 %>%
mutate(year = 2019,
plot_id = paste0(year, plotID),
plot = paste0("P-", toupper(plot)),
Location = toupper(Location)) %>%
select(-plotID) %>%
rename(site = Location,
trt_name = trt,
crop_type = crop) %>%
select(plot_id, crop_type, trt_name)
# write it ----------------------------------------------------------------
facts_inventory <- tidyinv
facts_inventory %>%
write_csv("data-raw/inventory/facts_inventory.csv")
use_data(facts_inventory, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.