## Get soil series (?), wt depth, and slope for each site
## used DADS class code as base
rm(list = ls())
#--packages we already know
library(sf)
library(ggplot2)
library(readr)
library(ggplot2)
library(dplyr)
library(janitor) #--a package that makes cleaning data easier
library(stringr) #--a tidyverse style package for dealing with character strings
#### KEITH ########################################################################################
# visualilze, correct? ----------------------------------------------------
srgo_shp <- st_read("data-raw/sare_soils/KeithKohler-Boone-Co/spatial/soilmu_a_aoi.shp") %>%
clean_names() #--again, people who make spatial data like all upper-case, this just fixes that
ggplot() +
geom_sf(data = srgo_shp, aes(fill = musym)) +
labs(title = "Keith, Boone Co")
ggsave("data-raw/sare_soils/fig_keith-soils.png")
# Spatial_Domain:
# Bounding_Coordinates:
# West_Bounding_Coordinate: -94.17
# East_Bounding_Coordinate: -93.69
# North_Bounding_Coordinate: 42.21
# South_Bounding_Coordinate: 41.86
# get map unit names and amounts ------------------------------------------
#--freaking no column names ?! used dad's data
mu_datraw <- read.table("data-raw/sare_soils/KeithKohler-Boone-Co/tabular/mapunit.txt", header = F, sep = "|")
names(mu_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_mapunit-colnames.csv"))
#--what map unit dominates the area?
mu_dat <-
mu_datraw %>%
remove_empty("cols") %>% #--removes empty columns
mutate(wgt = muacres/sum(muacres)) %>%
select(muname, musym, mukey, wgt) %>%
arrange(-wgt)
# 2. water table depth and slopes from mapunit aggregate data (muaggatt)
wtab_datraw <- read.table("data-raw/sare_soils/KeithKohler-Boone-Co/tabular/muaggatt.txt", header = F, sep = "|")
names(wtab_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_muaggatt-colnames.csv"))
wtab_dat <-
wtab_datraw %>%
remove_empty("cols") %>%
select(musym, muname, mukey, slopegradwta, wtdepannmin)
# 3. combine them
keith <-
mu_dat %>%
left_join(wtab_dat) %>%
mutate(site_name = "Central") %>%
select(site_name, wgt, muname, slopegradwta, wtdepannmin)
keith %>% write_csv("data-raw/sare_soils/keith.csv")
#### STOUT ########################################################################################
# visualilze, correct? ----------------------------------------------------
srgo_shp <- st_read("data-raw/sare_soils/RobStout-Washington-Co/spatial/soilmu_a_aoi.shp") %>%
clean_names() #--again, people who make spatial data like all upper-case, this just fixes that
ggplot() +
geom_sf(data = srgo_shp, aes(fill = musym)) +
labs(title = "Rob, Washington Co")
ggsave("data-raw/sare_soils/fig_rob-soils.png")
# Spatial_Domain:
# Bounding_Coordinates:
# West_Bounding_Coordinate: -91.947
# East_Bounding_Coordinate: -91.484
# North_Bounding_Coordinate: 41.512
# South_Bounding_Coordinate: 41.161
# get map unit names and amounts ------------------------------------------
mu_datraw <- read.table("data-raw/sare_soils/RobStout-Washington-Co/tabular/mapunit.txt", header = F, sep = "|")
names(mu_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_mapunit-colnames.csv"))
#--what map unit dominates the area?
mu_dat <-
mu_datraw %>%
remove_empty("cols") %>% #--removes empty columns
mutate(wgt = muacres/sum(muacres)) %>%
select(muname, musym, mukey, wgt) %>%
arrange(-wgt)
# 2. water table depth and slopes from mapunit aggregate data (muaggatt)
wtab_datraw <- read.table("data-raw/sare_soils/RobStout-Washington-Co/tabular/muaggatt.txt", header = F, sep = "|")
names(wtab_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_muaggatt-colnames.csv"))
wtab_dat <-
wtab_datraw %>%
remove_empty("cols") %>%
select(musym, muname, mukey, slopegradwta, wtdepannmin)
# 3. combine them
rob <-
mu_dat %>%
left_join(wtab_dat) %>%
mutate(site_name = "East") %>%
select(site_name, wgt, muname, slopegradwta, wtdepannmin)
rob %>% write_csv("data-raw/sare_soils/rob.csv")
#### JIM ########################################################################################
# visualilze, correct? ----------------------------------------------------
srgo_shp <- st_read("data-raw/sare_soils/JimFunke-Greene-Co/spatial/soilmu_a_aoi.shp") %>%
clean_names() #--again, people who make spatial data like all upper-case, this just fixes that
ggplot() +
geom_sf(data = srgo_shp, aes(fill = musym)) +
labs(title = "Jim, Greene Co")
ggsave("data-raw/sare_soils/fig_jim-soils.png")
# Spatial_Domain:
# Bounding_Coordinates:
# West_Bounding_Coordinate: -94.630
# East_Bounding_Coordinate: -94.164
# North_Bounding_Coordinate: 42.210
# South_Bounding_Coordinate: 41.863
# get map unit names and amounts ------------------------------------------
mu_datraw <- read.table("data-raw/sare_soils/JimFunke-Greene-Co/tabular/mapunit.txt", header = F, sep = "|")
names(mu_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_mapunit-colnames.csv"))
#--what map unit dominates the area?
mu_dat <-
mu_datraw %>%
remove_empty("cols") %>% #--removes empty columns
mutate(wgt = muacres/sum(muacres)) %>%
select(muname, musym, mukey, wgt) %>%
arrange(-wgt)
# 2. water table depth and slopes from mapunit aggregate data (muaggatt)
wtab_datraw <- read.table("data-raw/sare_soils/JimFunke-Greene-Co/tabular/muaggatt.txt", header = F, sep = "|")
names(wtab_datraw) <- names(read_csv("data-raw/sare_soils/SSURGO_muaggatt-colnames.csv"))
wtab_dat <-
wtab_datraw %>%
remove_empty("cols") %>%
select(musym, muname, mukey, slopegradwta, wtdepannmin)
# 3. combine them
jim <-
mu_dat %>%
left_join(wtab_dat) %>%
mutate(site_name = "West") %>%
select(site_name, wgt, muname, slopegradwta, wtdepannmin)
jim %>% write_csv("data-raw/sare_soils/jim.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.