The goal of PFIweeds2020 is to grant easy access to data and analysis functions for the 2020 Practical Farmers of Iowa project looking at the effect of cover-cropping on the weed seedbank.
We sampled soil from three long-term (10+ years) sites with experiments using a winter rye cover crop in a corn/soybean rotation compared to the same rotation without a winter cover crop. We took that soil back to a greenhouse, germinated the seeds, then counted/identified the weeds as we plucked them from their cozy homes and threw them on the ground. The results will be available in a publication coming soon…
The development version from GitHub can be accessed with:
# install.packages("devtools")
devtools::install_github("vanichols/PFIweeds2020")
library(PFIweeds2020)
Look at the list of weeds we found
head(pfi_weedsplist)
#> common_name scientific_name code possible_mislabel photo_path
#> 1 water hemp amaranthus tuberculatus AMATU <NA> C4
#> 2 lamb's quarters chenopodium album CHEAL <NA> C3
#> 3 velvet leaf abutilon theophrasti ABUTH <NA> C3
#> 4 rye (cereal) secale cereale SECCE <NA> C3
#> 5 nightshade solanum ptycanthum SOLPT SOPT7 C3
#> 6 purslane portulaca oleracea POROL <NA> C4
#> functional_grp family
#> 1 forb amaranthaceae
#> 2 forb amaranthaceae
#> 3 forb malvaceae
#> 4 grass poaceae
#> 5 forb solanaceae
#> 6 forb portulacaceae
You really want to see the raw data?
head(pfi_ghobsraw)
#> obs_date obs_initials electrec_initials site_name field sys_trt cc_trt
#> 1 2019-05-03 gn eo Boyd B44 silage rye
#> 2 2019-05-03 gn eo Boyd B44 silage no
#> 3 2019-05-03 gn eo Boyd B44 silage no
#> 4 2019-05-03 gn eo Boyd B44 silage rye
#> 5 2019-05-03 gn eo Boyd B44 silage no
#> 6 2019-05-03 gn eo Boyd B44 silage rye
#> crop_2019 rep blockID trayID AMATU CHEAL ABUTH SECCE SOLPT POROL RAPSA
#> 1 corn 2 B44_2 B44_2-rye-t2 2 7 NA NA NA NA NA
#> 2 corn 2 B44_2 B44_2-no-t1 3 NA NA NA NA NA NA
#> 3 corn 4 B44_4 B44_4-no-t2 18 NA NA NA NA NA NA
#> 4 corn 1 B44_1 B44_1-rye-t3 NA 3 NA NA NA NA NA
#> 5 corn 1 B44_1 B44_1-no-t1 39 10 NA NA NA NA NA
#> 6 corn 1 B44_1 B44_1-rye-t2 18 16 NA NA NA NA NA
#> SETFA EUPMA SETVI POLAV CONCA TAROF DIGSA PLAMA OXAST POLPY UG UB
#> 1 NA NA NA NA NA NA NA NA NA NA NA NA
#> 2 NA NA NA NA NA NA NA NA NA NA NA NA
#> 3 NA NA NA NA NA NA NA NA NA NA NA NA
#> 4 NA NA NA NA NA NA NA NA NA NA NA NA
#> 5 NA NA NA NA NA NA NA NA NA NA NA NA
#> 6 NA NA NA NA NA NA NA NA NA NA NA NA
You can use a custom function to quickly summarise it: Total number of weeds in each experimental unit:
head(pfi_ghobsraw %>% pfifun_sum_byeu())
#> # A tibble: 6 x 8
#> # Groups: site_name, field, sys_trt, cc_trt, rep [6]
#> site_name field sys_trt cc_trt rep blockID totseeds totseeds_m2
#> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 Boyd B42 grain no 1 B42_1 34 663.
#> 2 Boyd B42 grain no 2 B42_2 12 234.
#> 3 Boyd B42 grain no 3 B42_3 9 175.
#> 4 Boyd B42 grain no 4 B42_4 7 136.
#> 5 Boyd B42 grain no 5 B42_5 17 331.
#> 6 Boyd B42 grain rye 1 B42_1 116 2261.
There is more! Probably more than you want…
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.