## code to prepare `melbweather` dataset goes here
# update once rwalkr gets put up on cran
# remotes::install_github("earowang/rwalkr@d528e7b")
# well we use January and June 2020
library(rwalkr)
library(dplyr)
extract_measurements <- function(month_rng) {
# extract regular measurements, not any averaged forms
# variables are temperature, relative humidity, barometric pressure,
# particular matter 2.5 and 10, and wind speed
sensors <- c("TPH.TEMP",
"TPH.RH",
"TPH.PRESSURE",
"PM2.5",
"PM10",
"WS")
sensors_clean <- c("ambient_temperature",
"relative_humidity",
"barometric_pressure",
"pm2.5",
"pm10",
"wind_speed")
names(sensors_clean) <- sensors
start <- month_rng[1]
end <- month_rng[2]
# download data from start and end,
# filter to relevant sensors and pivot to wide form
melb_weather(start, end) %>%
filter(sensor_type %in% sensors) %>%
mutate(
sensor_type = sensors_clean[sensor_type],
value = as.numeric(value)
) %>%
tidyr::pivot_wider(
id_cols = c("site", "date_time", "date"),
names_from = sensor_type
)
}
months <- list(
jan = c(as.Date("2020-01-01"), as.Date("2020-01-31")),
jun = c(as.Date("2020-06-01"), as.Date("2020-06-30"))
)
melbweather <- bind_rows(lapply(months, extract_measurements))
# pull in the sites coordinates and description
sites <- select(pull_weather_sensors(),
site_id, description, longitude, latitude)
melbweather <- melbweather %>%
left_join(sites, by = c("site" = "site_id")) %>%
select(site, site_address = description, longitude, latitude, date_time, date, everything())
usethis::use_data(melbweather, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.