library(anchors)
library(mlr)
set.seed(1)
load("inst/examples/bike.RData")
bike$target = factor(resid(lm(cnt ~ days_since_2011, data = bike)) > 0,
levels = c(FALSE, TRUE), labels = c('below', 'above'))
bike$cnt = NULL
bike.task = makeClassifTask(data = bike, target = "target")
mod = mlr::train(mlr::makeLearner(cl = 'classif.randomForest',
id = 'bike-rf'), bike.task)
bins = list(
integer(),
integer(),
integer(),
integer(),
list(c("SAT", "SUN"), c("MON", "TUE"), c("WED", "THU", "FRI")),
#integer(),
integer(),
integer(),
# temp
c(0, 7, 14, 21, 28),
# hum
c(30, 60, 69, 92),
# windspeed
c(5, 10, 15, 20, 25),
integer()
)
explainer = anchors(bike, mod, target = "target", bins = bins, tau = 0.85, batchSize = 1000)
explained.instances = bike[sample(1:nrow(bike), 4),]
explanation = explain(explained.instances, explainer)
printExplanations(explainer, explanation)
plotExplanations(explanation)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.