PCA | R Documentation |
Perform a simple PCA using stats::prcomp
.
Optionally, it will create a PCA biplot using
factoextra::fviz_pca_biplot
if
plot = TRUE
.
PCA(data, plot = TRUE, ...)
data |
A numeric or complex matrix (or data frame) that will be used to perform the Principal Components Analysis. |
plot |
Boolean flag to indicate whether or not to create a PCA biplot. |
... |
Arguments passed on to
|
Data frame with PCA result.
# Toy dataset example_data <- data.frame(ID = c(1,2,3,4,5), P1 = c("one", "two", "three", "four", "five"), T1 = rnorm(5), T2 = rnorm(5)) example_data_pca <- PCA(example_data[, -c(1:2)]) # F1 Seedling Ionomics dataset data(ionomics) # Includes some missing data ionomics_rev <- MetaPipe::replace_missing(ionomics, excluded_columns = c(1, 2), replace_na = TRUE) ionomics_pca <- PCA(ionomics_rev[, -c(1:2)])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.