replace_missing | R Documentation |
NA
s)Replace missing values (NA
s) in a dataset, the user can choose
between two actions to handle missing data:
Drop traits (variables) that exceed a given threshold,
prop_na
, a rate of missing (NA
) and total observations.
Replace missing values by half of the minimum within each trait.
Finally, if there are traits for which all entries are missing, these will
be removed from the dataset and stored in a external CSV file called
"<out_prefix>_NA_raw_data.csv"
.
replace_missing( raw_data, excluded_columns = NULL, out_prefix = "metapipe", prop_na = 0.5, replace_na = FALSE )
raw_data |
Data frame containing the raw data. |
excluded_columns |
Numeric vector containing the indices of the dataset properties that are non-numeric, excluded columns. |
out_prefix |
Prefix for output files and plots. |
prop_na |
Proportion of missing/total observations, if a trait exceeds
this threshold and |
replace_na |
Boolean flag to indicate whether or not missing values should be replaced by half of the minimum value within each trait. |
Data frame containing the raw data without missing values.
# Toy dataset example_data <- data.frame(ID = c(1,2,3,4,5), P1 = c("one", "two", "three", "four", "five"), T1 = rnorm(5), T2 = rnorm(5), T3 = c(NA, rnorm(4)), # 20 % NAs T4 = c(NA, 1.2, -0.5, NA, 0.87), # 40 % NAs T5 = NA) # 100 % NAs MetaPipe::replace_missing(example_data, c(1, 2)) MetaPipe::replace_missing(example_data, c(1, 2), prop_na = 0.25) MetaPipe::replace_missing(example_data, c(1, 2), replace_na = TRUE) # F1 Seedling Ionomics dataset data(ionomics) # Includes some missing data ionomics_rev <- MetaPipe::replace_missing(ionomics, c(1, 2)) ionomics_rev <- MetaPipe::replace_missing(ionomics, excluded_columns = c(1, 2), prop_na = 0.025) ionomics_rev <- MetaPipe::replace_missing(ionomics, excluded_columns = c(1, 2), replace_na = TRUE) knitr::kable(ionomics_rev[1:5, 1:8]) # Clean up example outputs MetaPipe:::tidy_up("metapipe_")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.