| load_raw | R Documentation |
Load raw data from disk and aggregate (using the mean function)
observations with duplicated IDs (first column). Non-numeric columns must
be excluded using the excluded_columns parameter.
load_raw(raw_data_filename, excluded_columns = NULL)
raw_data_filename |
Filename containing the raw data, it can be a
relative path (e.g. |
excluded_columns |
Numeric vector containing the indices of the dataset properties that are non-numeric, excluded columns. |
Data frame with the pre-processed raw data.
# Toy dataset
example_data <- data.frame(ID = c(1,2,3,4,5),
P1 = c("one", "two", "three", "four", "five"),
T1 = rnorm(5),
T2 = rnorm(5))
write.csv(example_data, "example_data.csv", row.names = FALSE)
write.csv(example_data[c(1:5, 1, 2), ],
"example_data_dup.csv",
row.names = FALSE)
knitr::kable(MetaPipe::load_raw("example_data.csv", c(1, 2)))
knitr::kable(MetaPipe::load_raw("example_data_dup.csv", c(1, 2)))
# F1 Seedling Ionomics dataset
ionomics_path <- system.file("extdata",
"ionomics.csv",
package = "MetaPipe",
mustWork = TRUE)
ionomics <- MetaPipe::load_raw(ionomics_path)
knitr::kable(ionomics[1:5, 1:8])
# Clean up example outputs
MetaPipe:::tidy_up("example_data")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.