Description Usage Arguments Details Value Author(s) References Examples
It will compute the SJIVE/SJEF estimator and the associated variance covariance matrix
1 |
y |
Blah. The default is |
X1 |
Blah. The default is |
X2 |
Blah. The default is |
Z1 |
Blah. The default is |
Z2 |
Blah. The default is |
full |
Blah. The default is |
The optimization method is Blah
.
The full
parameter allows to...
The Z1
parameter allows to...
Returns an object of class IVEstim
.
An object of class IVEstim
is a list containing
at most the following components:
param |
The vector of parameters' estimates; |
Federico Crudu, federico.crudu@gmail.com,https://sites.google.com/site/federicocrudu/, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/
P. A. Bekker & F. Crudu (2015). "Jackknife instrumental variable estimation with heteroskedasticity",Journal of Econometrics, 185, 332–342.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(ManyIV)
# ST: Data Simulation:
y<-rnorm(500)#log(packs) # dependent variable
X1<- matrix(rnorm(500),500,1)#cbind(log(rprice),log(rincome))# matrix of endogenous variables
Z1<- matrix(rnorm(10000),500,20)#cbind(log(rincome) , tdiff , I(tax/cpi))# non included instruments
Z2<- matrix(1,length(y),1)# included instruments
# END: Data Simulation:
# ST: Estimation
sol = SJIVEfit(y,X1,X2,Z1,Z2,full=2)
# END: Estimation
str(sol)
plot(density(sol$beta))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.