## ---- include = FALSE----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup,message=FALSE,warning=FALSE-----------------------------------
library(scpackages)
## ----readSeurat,warning=FALSE,fig.width=8,fig.height=6-------------------
scaled_cluster <- readRDS("../scaled_cluster.13_February_2020.rds")
## ----gene_p,warning=FALSE,fig.width=8,fig.height=6-----------------------
tmp_hvf <-HVFInfo(scaled_cluster)
tmp_hvf$Symbol <- rownames(tmp_hvf)
# write.csv(tmp_hvf, file = "HVF_info.csv",row.names = FALSE)
## gene PCA Explore ##
scaled_cluster@misc$loading <- scpackages::pca_gene_loading(scaled_cluster)
scaled_cluster@misc$loading <-
scaled_cluster@misc$loading %>% left_join(tmp_hvf, by = "Symbol")
library(ggrepel)
ggplot(scaled_cluster@misc$loading,
aes(x=factor(pca_fix),y=variance.standardized, label = Symbol)) +
geom_point(color = ifelse(scaled_cluster@misc$loading$variance.standardized > 4
, "red", "black")) +
geom_text_repel(
data = subset(scaled_cluster@misc$loading, variance.standardized > 6 )
)+ggtitle(label = "Visualize the gene loading in each PCA ")
## ----param,warning=FALSE,fig.width=8,fig.height=6------------------------
scaled_cluster@misc$elbowPlot+ggtitle("Where is the elbow")
## ??Where is the elbow does it matters ??
## ----optimal_param,warning=FALSE,fig.width=8,fig.height=6----------------
pcRange <- seq(15,25,by = 2)
resolutionRange <- seq(0.4,1.2,by = 0.2)
scaled_cluster <- scpackages::gridFindClusters( Object = scaled_cluster,
pcRange, resolutionRange,
identPrefix = "solution",
verbose =FALSE)
ggplot(scaled_cluster@misc$data_NClust,
aes(x = resolution, y = Cell_types)) + geom_line() + facet_wrap(. ~ pc)
## ----vis_solution,warning=FALSE,fig.width=8,fig.height=6-----------------
library(easyalluvial)
alluvial_wide(dplyr::select(
scaled_cluster[[]],
solution_17_0.4,
solution_17_0.6,
solution_17_0.8
)) + theme_bw()
## ----group_clusters,warning=FALSE,fig.width=8,fig.height=6---------------
scaled_cluster <- scpackages::findSimilarClusterSolution(scaled_cluster,
identPrefix = "solution",
similarityCut = 0.8)
plot(scaled_cluster@misc$cluster_G1, vertex.color =
rainbow(10, alpha = 0.8)[scaled_cluster@misc$clusterlouvain$membership])
## ----warning=FALSE,fig.width=8,fig.height=6------------------------------
ggplot( scaled_cluster@misc$meta_cluster, aes(
y = resolution,
x = pca,
# shape = factor(Cell_types),
label = Cell_types,#membership,
color = factor(membership)
)
) + geom_text()
#+ scale_color_manual(values = rainbow(8)) #+ theme_dark()
## ----warning=FALSE,fig.width=8,fig.height=6------------------------------
cluster_representatives <- as_tibble( scaled_cluster@misc$meta_cluster %>%
group_by(membership,Cell_types) %>%
sample_n(1)) %>% arrange(pca,resolution)
x <- as.list(cluster_representatives %>%
filter( Cell_types==9 ) %>%
select(cluster_id))
alluvial_wide(scaled_cluster[[]][, as.character(x$cluster_id)]) +
theme(axis.text.x = element_text(angle = 90)) +
theme_bw() +
ggtitle(paste( length(x$cluster_id),
" different solutions with equal number of clusters"
))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.