rm(list=ls())
# LIBRARIES
#devtools::install_github("gtromano/DeCAFS")
#devtools::install_github("vrunge/ARRWestim")
library(DeCAFS)
library(ARRWestim)
N <- 5e3
sdEta <- 0.3
sdNu <- 0.3
phi <- 0.3
type <- "rand1"
nbSeg <- 10
jumpSize <- 2
nbK <- 10
varType <- "MAD"
### DATA GENERATION
y <- ARRWestim::dataRWAR(N = N,
sdEta = sdEta, sdNu = sdNu, phi = phi,
type = type,
nbSeg = nbSeg, jumpSize = jumpSize,
seed = sample(1e6,1))
### PARAMETER ESTIMATION (our method in the paper)
res <- bestParameters(y$y, nbK = nbK, type = varType)
res
### DeCAFS
deca <- DeCAFS::DeCAFS(y$y, 2*log(N),
list(sdEta = res$EtaOpt, sdNu = res$NuOpt, phi = res$argmin))
### MLE for PHI with the estimated signal
Z <- y$y - deca$signal
MLE_phi <- sum(Z[-1]*Z[-N])/(sum(Z[c(-1,-N)]*Z[c(-1,-N)]))
#comparison
MLE_phi
res$argmin
### MLE phi with the true signal y$signal
Z <- y$y - y$signal
MLE_phi_trueSignal <- sum(Z[-1]*Z[-N])/(sum(Z[c(-1,-N)]*Z[c(-1,-N)]))
MLE_phi_trueSignal
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.