View source: R/rnbtn_model_agg.R
rnbtn_model_agg | R Documentation |
rnbtn_model_agg aggregates the regularized nested negative binomial model results for all genes in a serial fashion.
rnbtn_model_agg( df, formula, locus_tag = locus_tag, fctrel = NONE, iter = 5, a = 0 )
df |
: Dataframe containing counts, covariates in the long format |
formula |
: Provide model matrix formula using as.formula() |
locus_tag |
: A column corresponding to gene names/locus tags .Ex: 'gene' |
fctrel |
: A list of column names and desired factor relevels . |
a |
: elastic net mixing parameter . Default is zero |
iter: |
Number of times to run cross validation to take the mean error associated with each lambda value, and then choose lambda.Default is 5. iter increases your run time |
#Simulating and selecting Counts TC_df <- rnbtn_simulate_data(n_strain=3,n_condition=4,n_slevel=3,n_rep=2)[[1]] #Selecting only first twenty locus tags as an example locuslist <- TC_df$locus_tag[1:20] TC_20_df <- subset(TC_df, locus_tag %in% locuslist) #Preparing covariate desired levels for fct_relevel fct_rel <- list(strain=c("strain_1","strain_2","strain_3"), condition=c("condition_1","condition_2","condition_3","condition_4"), slevel=c("slevel_1","slevel_2","slevel_3")) #Model nested formula formula <- as.formula(tncnt ~ strain/condition/slevel) #Run and aggregrate model results rnbtn_model_agg(TC_20_df,formula = formula,locus_tag = "locus_tag", fctrel = fct_rel, iter =2, a=0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.