# Global variables.
available.discrete.tests = c("mi", "mi-sh", "x2", "mc-mi", "smc-mi", "mc-x2",
"smc-x2", "sp-mi", "sp-x2")
available.ordinal.tests = c("jt", "mc-jt", "smc-jt")
available.continuous.tests = c("cor", "zf", "mi-g", "mi-g-sh", "mc-mi-g",
"smc-mi-g", "mc-cor", "smc-cor", "mc-zf", "smc-zf")
available.tests = c(available.discrete.tests, available.ordinal.tests,
available.continuous.tests)
semiparametric.tests = c("sp-mi", "sp-x2")
resampling.tests = c("mc-mi", "smc-mi", "mc-x2", "smc-x2", "mc-mi-g", "smc-mi-g",
"mc-cor", "smc-cor", "mc-zf", "smc-zf", "mc-jt", "smc-jt", semiparametric.tests)
asymptotic.tests = c("mi", "mi-g", "x2", "zf", "jt")
available.discrete.scores = c("loglik", "aic", "bic", "bde", "bdes", "k2", "mbde")
available.continuous.scores = c("bge", "loglik-g", "aic-g", "bic-g")
available.scores = c(available.discrete.scores, available.continuous.scores)
available.discrete.mi = c("mi")
available.continuous.mi = c("mi-g")
available.mi = c(available.discrete.mi, available.continuous.mi)
markov.blanket.algorithms = c("gs", "iamb", "fast.iamb", "inter.iamb")
local.search.algorithms = c("mmpc", "si.hiton.pc")
constraint.based.algorithms = c(markov.blanket.algorithms, local.search.algorithms)
score.based.algorithms = c("hc", "tabu")
hybrid.algorithms = c("rsmax2", "mmhc")
mim.based.algorithms = c("chow.liu", "aracne")
classifiers = c("naive.bayes", "tree.bayes")
available.learning.algorithms = c(constraint.based.algorithms, score.based.algorithms,
hybrid.algorithms, mim.based.algorithms, classifiers)
always.dag.result = c(score.based.algorithms, hybrid.algorithms, classifiers)
available.mvber.vartests = c("tvar", "gvar", "nvar", "nvark")
method.labels = c(
'gs' = "Grow-Shrink",
'iamb' = "IAMB",
'fast.iamb' = "Fast-IAMB",
'inter.iamb' = "Inter-IAMB",
'rnd' = "random/generated",
'hc' = "Hill-Climbing",
'tabu' = "Tabu Search",
'mmpc' = "Max-Min Parent Children",
'si.hiton.pc' = "Semi-Interleaved HITON-PC",
'rsmax2' = "Two-Phase Restricted Maximization",
'mmhc' = "Max-Min Hill-Climbing",
'aracne' = "ARACNE",
'chow.liu' = "Chow-Liu",
"naive.bayes" = "Naive Bayes Classifier",
"tree.bayes" = "TAN Bayes Classifier"
)
method.extra.args = list(
'hc' = c("max.iter", "maxp", "restart", "perturb"),
'tabu' = c("max.iter", "maxp", "tabu", "max.tabu")
)
test.labels = c(
'mi' = "Mutual Information (disc.)",
'mi-sh' = "Mutual Information (disc., shrink.)",
'mc-mi' = "Mutual Information (disc., MC)",
'smc-mi' = "Mutual Information (disc., Seq. MC)",
'sp-mi' = "Mutual Information (disc., semipar.)",
'mi-g' = "Mutual Information (Gauss.)",
'mi-g-sh' = "Mutual Information (Gauss., shrink.)",
'mc-mi-g' = "Mutual Information (Gauss., MC)",
'smc-mi-g' = "Mutual Information (Gauss., Seq. MC)",
'x2'= "Pearson's X^2",
'mc-x2'= "Pearson's X^2 (MC)",
'smc-x2'= "Pearson's X^2 (Seq. MC)",
'sp-x2'= "Pearson's X^2 (semipar.)",
'jt' = "Jonckheere-Terpstra",
'mc-jt' = "Jonckheere-Terpstra (MC)",
'smc-jt' = "Jonckheere-Terpstra (Seq. MC)",
'cor' = "Pearson's Correlation",
'mc-cor' = "Pearson's Correlation (MC)",
'smc-cor' = "Pearson's Correlation (Seq. MC)",
'zf' = "Fisher's Z",
'mc-zf' = "Fisher's Z (MC)",
'smc-zf' = "Fisher's Z (Seq. MC)"
)
score.labels = c(
'k2' = "Cooper & Herskovits' K2",
'bde' = "Bayesian Dirichlet (BDe)",
'bdes' = "Sparse Bayesian Dirichlet (BDes)",
'mbde' = "Bayesian Dirichlet (interventional data)",
'aic' = "AIC (disc.)",
'bic' = "BIC (disc.)",
'loglik' = "Log-Likelihood (disc.)",
'bge' = "Bayesian Gaussian (BGe)",
'loglik-g' = "Log-Likelihood (Gauss.)",
'aic-g' = "AIC (Gauss.)",
'bic-g' = "BIC (Gauss.)"
)
score.extra.args = list(
"k2" = character(0),
"bde" = c("prior", "beta", "iss"),
"bdes" = "iss",
"mbde" = c("iss", "exp"),
"aic" = c("k"),
"bic" = c("k"),
"bge" = c("prior", "beta", "iss", "phi"),
"loglik" = character(0),
"loglik-g" = character(0),
"aic-g" = c("k"),
"bic-g" = c("k")
)
mi.estimator.labels = c(
'mi' = "Maximum Likelihood (disc.)",
'mi-g' = "Maximum Likelihood (Gauss.)"
)
mi.estimator.tests = c(
'mi' = "mi",
'mi-g' = "mi-g"
)
graph.generation.algorithms = c("ordered", "ic-dag", "melancon", "empty", "averaged")
graph.generation.labels = c(
"ordered" = "Full Ordering",
"ic-dag" = "Ide & Cozman's Multiconnected DAGs",
"melancon" = "Melancon's Uniform Probability DAGs",
"empty" = "Empty",
"averaged" = "Model Averaging"
)
graph.generation.extra.args = list(
"ordered" = "prob",
"ic-dag" = c("burn.in", "max.degree", "max.in.degree", "max.out.degree", "every"),
"melancon" = c("burn.in", "max.degree", "max.in.degree", "max.out.degree", "every"),
"averaged" = "threshold"
)
prior.distributions = c("uniform", "vsp", "cs")
prior.labels = c(
"uniform" = "Uniform",
"vsp" = "Variable Selection",
"cs" = "Castelo & Siebes"
)
cpq.algorithms = c("ls", "lw")
cpq.labels = c(
"ls" = "Logic/Forward Sampling",
"lw" = "Likelihood Weighting"
)
cpq.extra.args = list(
"ls" = c("n", "batch", "query.nodes"),
"lw" = c("n", "batch", "query.nodes")
)
discrete.loss.functions = c("logl", "pred")
continuous.loss.functions = c("logl-g", "cor", "mse")
loss.functions = c(discrete.loss.functions, continuous.loss.functions)
loss.labels = c(
"logl" = "Log-Likelihood Loss (disc.)",
"pred" = "Classification Error",
"logl-g" = "Log-Likelihood Loss (Gauss.)",
"cor" = "Predictive Correlation",
"mse" = "Mean Squared Error"
)
loss.extra.args = list(
"logl" = character(0),
"pred" = "target",
"logl-g" = character(0),
"cor" = "target",
"mse" = "target"
)
available.fitting.methods = c("mle", "bayes")
fitting.labels = c(
"mle" = "Maximum Likelihood",
"bayes" = "Bayesian Parameter Estimation"
)
fitting.extra.args = list(
"mle" = character(0),
"bayes" = "iss"
)
mvber.labels = list(
"tvar" = "Total Variance",
"gvar" = "Generalized Variance",
"nvar" = "Squared Frobenius Norm (1/4)",
"nvark" = "Squared Frobenius Norm (k/4)"
)
supported.clusters = c("MPIcluster", "PVMcluster","SOCKcluster")
available.discretization.methods = c("quantile", "interval", "hartemink")
discretization.labels = c(
"quantile" = "Quantile Discretization",
"interval" = "Interval Discretization",
"hartemink" = "Hartemink's Pairwise Mutual Information"
)
discretization.extra.args = list(
"quantile" = character(0),
"interval" = character(0),
"hartemink" = c("ibreaks", "idisc")
)
template.numeric = numeric(1)
# global test counter.
reset.test.counter = function() {
.Call("reset_test_counter")
}#RESET.TEST.COUNTER
increment.test.counter = function(i = 1) {
.Call("increment_test_counter", i)
}#INCREMENT.TEST.COUNTER
test.counter = function() {
.Call("get_test_counter")
}#TEST.COUNTER
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.