mvBEKK.est: Estimate a BEKK(p,q) model

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

mvBEKK.est estimates a BEKK(p,q) model for two given time series

Usage

1
mvBEKK.est(eps, order = c(1,1), params = NULL, fixed = NULL, method = "BFGS", verbose = F)

Arguments

eps

a data frame contaning all the time series

order

an integer vector of length 2 giving the orders of the model to be fitted. order[2] refers to the ARCH order and order[1] to the GARCH order.

params

a vector of initial parameters for the optimization process

fixed

a two dimensional array that contains the user specified fixed parameter values.

method

method to be used in the optimization process. See optim function for available options.

verbose

If set to True, verbose output will be printed on the screen

Details

mvBEKK.est estimates a BEKK(p,q) model, where p stands for the GARCH order, and q stands for the ARCH order

Value

A list of class "mvBEKK.est" with the following elements:

eps

a data frame contaning all time series

length

length of the series

order

order of the BEKK model fitted

estimation.time

time to complete the estimation process

total.time

time to complete the whole routine within the mvBEKK.est process

estimation

estimation object returned from the optimization process, using optim

aic

the AIC value of the fitted model

est.params

list of estimated parameter matrices

asy.se.coef

list of asymptotic theory estimates of standard errors of estimated parameters

cor

list of estimated conditional correlation series

sd

list of estimated conditional standard deviation series

H.estimated

list of estimated series of covariance matrices

eigenvalues

estimated eigenvalues for sum of Kronecker products

uncond.cov.matrix

estimated unconditional covariance matrix

residuals

list of estimated series of residuals

Author(s)

Harald SCHMIDBAUER harald@hs-stat.com, Vehbi Sinan TUNALIOGLU vst@vsthost.com

References

Bauwens L., S. Laurent, J.V.K. Rombouts: Multivariate GARCH models: A survey, April, 2003

Bollerslev T.: Modelling the coherence in short-run nominal exchange rate: A multivariate generalized ARCH approach, Review of Economics and Statistics, 498–505, 72, 1990

Engle R.F., K.F. Kroner: Multivariate simultaneous generalized ARCH, Econometric Theory, 122-150, 1995

Engle R.F.: Dynamic conditional correlation: A new simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 339–350, 20, 2002

Tse Y.K., A.K.C. Tsui: A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations, Journal of Business and Economic Statistics, 351-362, 20, 2002

See Also

mvBEKK.sim for simulation of BEKK models; mvBEKK.diag for printing out mvBEKK.est estimation object in a fancy format.

Examples

1
2
3
4
5
6
## Not run: 
sim = mvBEKK.sim(series.count = 3, T = 1000) # simulate a 3 dimensional mgarch model with length of 1000
eps = data.frame(sim$eps[[1]], sim$eps[[2]], sim$eps[[3]]) # encapsulate
est = mvBEKK.est(eps) # estimate the simulated model

## End(Not run)

vst/mgarch documentation built on May 3, 2019, 7:09 p.m.