Description Usage Arguments Value Author(s) See Also Examples
View source: R/predict.ELMCox.R
Predicting from A Regularized Cox Extreme Learning Machine Model
1 2 |
object |
An object that inherits from class ELMCox. |
testx |
A data frame in which to look for variables with which to predict. |
... |
Additional arguments for |
produces a vector of predictions or a matrix of predictions
Hong Wang
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | set.seed(123)
require(SurvELM)
require(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
# Default with lasso penalty
elmsurvmodel=ELMCox(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]))
# with ridge penalty and RBF kernel, alpha has the same meaning as in glmnet
elmsurvmodel=ELMCox(x=trset[,-rii],y=Surv(trset[,rii[1]],
trset[,rii[2]]),Kernel_type="RBF_kernel",Kernel_para=c(2,1),alpha=0)
# with elastic net penalty
elmsurvmodel=ELMCox(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]),alpha=0.5)
#The predicted linear predictor
testprelin=predict(elmsurvmodel,teset[,-c(rii)],type="link")
#The predicted relative-risk
testpreres=predict(elmsurvmodel,teset[,-c(rii)],type="response")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.