Description Usage Arguments Value Author(s) See Also Examples
View source: R/predict.ELMCoxBoost.R
Predicting from An Extreme Learning Machine Cox Model with Likelihood Based Boosting
1 2 |
object |
An object that inherits from class ELMCoxBoost. |
testx |
A data frame in which to look for variables with which to predict. |
... |
Additional arguments for |
produces a vector of predictions or a matrix of predictions
Hong Wang
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | set.seed(123)
library(SurvELM)
library(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
elmsurvmodel=ELMCoxBoost(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]))
#THE predicted linear predictor
testpre=predict(elmsurvmodel,teset[,-c(rii)])
#The predicted cumulative incidence function
testprecif=predict(elmsurvmodel,teset[,-c(rii)],type="CIF")
# The predicted partial log-likelihood
testprellk=predict(elmsurvmodel,teset[,-c(rii)],newtime=teset[,rii[1]],
newstatus=teset[,rii[2]],type="logplik")
uniquetimes=sort(unique(trset$time))
# The predicted probability of not yet having had the event at the time points given in times
testprerisk=predict(elmsurvmodel,teset[,-c(rii)],times=uniquetimes,type="risk")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.