##' Predicting from A Kernel Extreme Learning Machine Ensemble Using the Buckley-James estimator
##' @title SurvELM predict.ELMBJEN
##' @param object An object that inherits from class ELMBJEN.
##' @param testx A data frame in which to look for variables with which to predict.
##' @param trlength Number of based models used for prediction, shouble be less than and equal to the number for training.
##' @param ... Additional arguments.
##' @return produces a vector of predictions or a matrix of predictions
##' @seealso \code{predict.ELMBJ}
##' @author Hong Wang
##' @references
##' \itemize{
##' \item Hong Wang et al (2017). A Survival Ensemble of Extreme Learning Machine. Applied Intelligence, DOI:10.1007/s10489-017-1063-4.
##' }
##' @examples
##' set.seed(123)
##' require(SurvELM)
##' require(survival)
##' #Lung DATA
##' data(lung)
##' lung=na.omit(lung)
##' lung[,3]=lung[,3]-1
##' n=dim(lung)[1]
##' L=sample(1:n,ceiling(n*0.5))
##' trset<-lung[L,]
##' teset<-lung[-L,]
##' rii=c(2,3)
##' # with RBF kernel
##' elmsurvmodel=ELMBJEN(x=trset[,-rii],y=Surv(trset[,rii[1]],trset[,rii[2]]),
##' trlength=10,Kernel_type="RBF_kernel",Kernel_para=c(2,1))
##' #The second base model
##' fit2=elmsurvmodel$elmcoxfit[[2]]
##' #The predicted survival
##' testprelin=predict(elmsurvmodel,teset[,-c(rii)])
##' @export
predict.ELMBJEN <-function(object, testx,trlength,...)
{
elmsurvfit=object$elmsurvfit
colindexes=object$colindexes
if(missing(trlength)) trlength=object$trlength
if (trlength>object$trlength) trlength=object$trlength
# classify the test data
testpre<-NULL
for (i in 1:trlength) {
#if (oobacc[i]<=avroobacc)
{
# preparing for testing
testdata=testx[,colindexes[[i]]]
testdata=as.matrix(testdata)
predicts<-predict(elmsurvfit[[i]],testdata)
testpre<-cbind(predicts,testpre)
}
}
ensemble_predictions<-rowMeans(testpre)
return(ensemble_predictions)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.