Description Usage Arguments Author(s) References See Also Examples
Computes empirical Bayes estimate of power parameter (Gravestock&Held, 2017).
1 2 3 4  | ## S3 method for class 'betaMix'
powerparameter(prior, n, r, p.prior.a = 1, p.prior.b = 1, ...)
## S3 method for class 'normMix'
powerparameter(prior, n, m, sigma, ...)
 | 
prior | 
 An RBesT mixture object with a single mixture component  | 
n | 
 sample size  | 
r | 
 Number of successes  | 
m | 
 Sample mean  | 
sigma | 
 Sample standard deviation  | 
p.prior.a | 
 in case of binary outcome, shape1 parameter of initial beta prior for successes.  | 
p.prior.b | 
 in case of binary outcome, shape2 parameter of initial beta prior for successes.  | 
... | 
Manuel Wiesenfarth
Gravestock, I. and Held, L. (2017). Adaptive power priors with empirical bayes for clinical trials. Pharmaceutical statistics, 16(5):349-360.
package StudyPrior
1 2 3 4 5 6 7 8 9 10 11 12  | # Normal Outcome
  # standard deviation
    sigma=1
  # prior with nominal prior ESS=50
    info <-mixnorm(informative=c(1, 0,1/sqrt(50)), sigma=sigma)
  
  n=10 # sample size
  m=0 #data mean equal to prior mean
  powerparameter(info,m=m,n=n,sigma=sigma)
  m=2 #prior-data conflict
  powerparameter(info,m=m,n=n,sigma=sigma)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.