Description Usage Arguments Details Value References Examples
The package ELBIG provides functions for parameter estimation for re-parameterized length-biased inverse Gaussian distribution with two estimation methods: the maximum likelihood method, the method of moments.
1 2 3 |
X |
vector of data. |
n |
a number of observations. |
lambda |
a value of the parameter lambda. |
theta |
a value of the parameter theta. |
Re-parameterized Length-Biased Inverse Gaussian (LBIG) Distribution
Define X as a positive random variable with the length-biased inverse Gaussian distribution based on Ahmed et al. (2008). A density function can be written in this form:
fLBIG=(1/(theta*sqrt(2*pi)))*((theta/X)^(1/2))*exp(-0.5*(sqrt(X/theta)-(lambda*sqrt(theta/X))))
,
where lambda, theta>0.
The Parameter Estimation for Re-parameterized Length-Biased Inverse Gaussian Distribution
MME |
gives the value of parameter estimates by the method of moments. |
MLE |
gives the value of parameter estimates by the maximum likelihood method. |
Mill_Vibration |
gives the vibration of the vertical roller mill in 60 minutes, contains the time (a.m.) and values of mill vibration (um), collected on 10 February 2019 from Phaphan (2021). |
Folks, J. L. & Chhikara, R. S. (1978). The inverse Gaussian distribution and its statistical application - a review. Journal of the Royal Statistical Society.Serie B, 40, 263–289.
Ahmed, S.E., Budsaba, K., Lisawadi, S., & Volodin, A. (2008). Parametric estimation for the Birnbaum-Saunders lifetime distribution based on new parametrization. Thailand Statistician, 6(2), 213-240.
Phaphan, W. (2021). R package for the two-parameters crack distribution. International Journal of Mathematics and Computer Science, 16(4), in press.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.