#' @title The Parameter Estimation for Re-parameterized Length-Biased Inverse Gaussian Distribution
#'
#' @description The package ELBIG provides functions for parameter estimation for re-parameterized length-biased inverse Gaussian distribution with two estimation methods: the maximum likelihood method, the method of moments.
#'
#' @param X vector of data
#' @param n a number of observations
#' @param lambda a value of the parameter lambda
#' @param theta a value of the parameter theta
#'
#' @return ?
#'
#' @examples
#' X <- c(7.7,1.2,4,2,0.5)
#' MLE(X)
#'
###############The Parameter Estimation for Re-parameterized Length-Biased Inverse Gaussian Distribution#####################
MME<-function(X){
n<-length(X)
va<-var(X)* (n - 1) / n
me<-mean(X)
lambhat=((me^2)-(2*va)+(me*sqrt((me^2)+(4*va))))/(2*va)
thehat=((-me)+sqrt((me^2)+(4*va)))/2
return(list(Lamdahat=lambhat,Thetahat=thehat))
}
#MME(X)
MLE=function(X){
n<-length(X)
me<-mean(X)
T <- sum(1/X)
lambhat=n/(T*me-n)
thehat=(T*me-n)/T
return(list(Lamdahat=lambhat,Thetahat=thehat))
}
#MLE(X)
Mill_Vibration<- matrix(c(
05.00,77.01,
05.01,77.01,
05.02,68.72,
05.03,71.38,
05.04,73.99,
05.05,66.87,
05.06,71.43,
05.07,81.3,
05.08,82.33,
05.09,76.78,
05.10,70.31,
05.11,74.88,
05.12,69.25,
05.13,66.57,
05.14,68.97,
05.15,67.45,
05.16,72.09,
05.17,72.09,
05.18,71.19,
05.19,63.63,
05.20,93.72,
05.21,82.32,
05.22,71.93,
05.23,77.75,
05.24,92.91,
05.25,76.27,
05.26,91.95,
05.27,73.65,
05.28,71.42,
05.29,76.77,
05.30,66.5,
05.31,75.61,
05.32,71.14,
05.33,69.7,
05.34,72.48,
05.35,71.53,
05.36,74.37,
05.37,77.88,
05.38,69.67,
05.39,66.85,
05.40,78.9,
05.41,74.88,
05.42,77.37,
05.43,85.67,
05.44,66.05,
05.45,66.06,
05.46,72.03,
05.47,74.17,
05.48,70.65,
05.49,75.99,
05.50,72.54,
05.51,85.45,
05.52,74.6,
05.53,76.37,
05.54,70.02,
05.55,77.66,
05.56,88.71,
05.57,86.86,
05.58,76.82,
05.59,68.56),
nrow = 60, byrow = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.