Description Usage Arguments Value Examples
View source: R/Zooming_strategy.R
perform zooming strategy on output of mWaveQTL.
1 | zooming_strategy(res, lev_res)
|
res |
output of mWaveQTL |
lev_res |
level of resolution of the mWaveQTL analysis |
Value of the likelihood on a sub tree.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ## Not run:
set.seed(66)
#########################################
#Generate a randomly sample signal size=1Mb
#########################################
#5000 Randomly choosen pos
my_pos <- sort(sample(1:1000000, size=5000,replace = FALSE))
#############################
#Three different bump signals
#############################
my_functions <-data.frame(f0 = c(rep(0,400000),rep(0,200000),rep(0,400000)),
f1 = c(rep(0,400000),rep(1,200000),rep(0,400000)) ,
f2=c(rep(0,400000),rep(2,200000),rep(0,400000)))
library(gridExtra)
###########################
#Minor allele frequency 30%
###########################
MAF=0.3
sampl_schem <- c((1-MAF)^2,2*MAF*(1-MAF),MAF^2)
#######################################
#sampling at Hardy Weinberg equilibrium
#######################################
#Assigning class
#sample size =4000
n_size=4000
type_fn <-sample(0:2,replace = TRUE,size=n_size, prob= sampl_schem )
signals <- matrix(my_functions[my_pos,2 ], ncol=1 ) %*%t(matrix(type_fn,ncol=1))
#dim(signals)= nSNP, nind
###############################################################
#Generate a phenotype with variance explained by signals 0.5%
###############################################################
varexp=0.005
var_noise <- (1-varexp)*var(sample(0:2,replace = TRUE,size=10000,
prob=sampl_schem ))/varexp
Y <- rnorm(n=n_size,sd=sqrt(var_noise)) +type_fn
df <- data.frame(y=Y,signals =factor(type_fn))
P1 <- ggplot(df,aes(y=y,x=signals))+
geom_boxplot()+
xlab("Type of signals")+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=14,face="bold"))+
ylab("Simulated Phenotype")+
theme_bw()+
ggtitle("Variation of the phenotype\ndepending of the signals, \nVariance explained =0.5%")
df <- data.frame(pos= rep(my_pos,3),y=c(my_functions[my_pos,1],my_functions[my_pos,2],my_functions[my_pos,3]),
mycol = factor(c(rep("f0",length(my_pos)),rep("f1",length(my_pos)),rep("f2",length(my_pos))) ) )
P2 <- ggplot(df,aes(y=y,x=pos,color=mycol))+
geom_point(size=1)+
xlab("Base pair")+
ylab("Number of variants")+
theme_bw()+
theme(legend.title=element_blank())+
ggtitle("Three different kind of signals signal")
grid.arrange(P1,P2,ncol=2)
##################
#Screening
##################
res <- mWaveQTL( Y,signal=signals,pos=my_pos,
lev_res=6,sigma_b = 0.2)
zooming_strategy(res, 6)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.