library(rb3)
library(tidyverse)
ch <- cotahist_get(Sys.Date(), "yearly")
fii <- cotahist_fiis_get(ch)
symbols <- fii |>
group_by(symbol) |>
summarise(volume = sum(volume)) |>
slice_max(volume, n = 10) |>
pull(symbol)
fii |>
filter(symbol %in% symbols) |>
ggplot(aes(x = refdate, y = volume, group = symbol, colour = symbol)) +
geom_line() +
scale_y_continuous(labels = scales::label_number_si())
eq <- cotahist_equity_get(ch)
symbols_eq <- eq |>
group_by(symbol) |>
summarise(volume = sum(volume)) |>
slice_max(volume, n = 10) |>
pull(symbol)
eq |>
filter(symbol %in% symbols_eq) |>
ggplot(aes(x = refdate, y = volume, group = symbol, colour = symbol)) +
geom_line() +
scale_y_continuous(labels = scales::label_number_si())
etfs <- cotahist_etfs_get(ch)
symbols_etfs <- etfs |>
group_by(symbol) |>
summarise(volume = sum(volume)) |>
slice_max(volume, n = 10) |>
pull(symbol)
etfs |>
filter(symbol %in% symbols_etfs) |>
ggplot(aes(x = refdate, y = volume, group = symbol, colour = symbol)) +
geom_line() +
scale_y_continuous(labels = scales::label_number_si())
# ----
library(rb3)
library(tidyverse)
ch <- cotahist_get(Sys.Date(), "yearly")
etfs <- cotahist_etfs_get(ch)
total_volume <- etfs |>
summarise(volume = sum(volume)) |>
pull(volume)
fmt <- scales::label_percent(accuracy = 0.1)
etfs |>
group_by(symbol) |>
summarise(volume = sum(volume)) |>
mutate(volume_ratio = volume / total_volume) |>
slice_max(volume_ratio, n = 10) |>
mutate(volume_ratio_acc = cumsum(volume_ratio)) |>
ggplot(aes(
x = reorder(symbol, -volume_ratio), y = volume_ratio,
label = fmt(volume_ratio)
)) +
geom_bar(stat = "identity", fill = "royalblue") +
geom_text(nudge_y = 0.01) +
scale_y_continuous(labels = scales::label_percent()) +
labs(
x = NULL, y = NULL,
title = "Volume Financeiro das 10 Maiores ETFs",
subtitle = "Percentual Volume Financeiro Negociado nas 10 Maiores ETFs em 2022",
caption = "Dados obtidos com \U0001F4E6 rb3 - wilsonfreitas"
)
# ----
library(tidyverse)
ch <- cotahist_get("2021-12-01", "monthly")
symbols <- c(
"ABEV3", "BBAS3", "B3SA3", "CIEL3", "EGIE3", "EZTC3", "INTB3", "ITSA4",
"LREN3", "OIBR3", "PSSA3", "SBFG3", "WEGE3"
)
pos <- c(1202, 400, 1500, 1000, 800, 800, 299, 1050, 776, 5000, 930, 200, 100)
names(pos) <- symbols
df <- cotahist_get_symbols(ch, symbols)
max_date <- max(df$refdate)
symbols_ <- df |>
filter(refdate == max_date) |>
pull(symbol)
closing <- df |>
filter(refdate == max_date) |>
pull(close)
names(closing) <- symbols_
c1 <- (closing[symbols] * pos[symbols])
cbind(c1, pos)
rbcb::get_series(1619)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.