MCMC Chain class.
bound_namesnames of bounds slot in the original Scenario object
contrast_namesnames of contrasts slot in the Scenario object
gene_namesnames of genes, taken from the row names of the count data matrix
library_namesnames of the libraries/samples, taken from the column names of the count data matrix
proposition_namesnames of propositions slot in the Scenario object
boundsvalues to compare contrasts to. The comparison is to see if the contrast is greater than
its corresponding element in bounds (from the Scenario object)
contrastscontrasts from the Scenario object.
countsRNA-seq count data, flattened from a matrix
designDesign, flattened from the design matrix. Original matrix must have rows corresponding to colums/libraries in RNA-seq data and colums corresponding to sets of gene-specific variables.
propositionspropositions of inequalities involving contrasts from the Scenario object.
supplementa list containing supplementary information about the scenario: for example, how the data were simulated, if applicable
burninMCMC burnin, the number of MCMC iterations to ignore at the beginning of each obj
effects_update_betabounds of l for which to update the beta_l, g parameters.
theta_updateIndices l for which theta_l is updated/sampled in the MCMC.
genes_returnIndices of genes whose parameter samples you want to return. Applies to all gene-specific parameters except for the epsilons.
genes_return_epsilonIndices of genes g for which epsilon_n, g is updated/returned.
iterationsNumber of MCMC iterations after burnin for which selected parameter samples are kept. Total MCMC iterations = burnin + thin * "iterations", and the whole "thin * iterations" portion is used to calculate posterior means, mean squares, and probabilities.
libraries_returnIndices of RNA-seq libraries whose parameter samples you want to return. Currently moot because there are no library-specific parameters other than the epsilons, but that could change in future versions of the package.
libraries_return_epsilonIndices of RNA-seq libraries n for which epsilon_n, g is updated/returned. Applies to all library-specific parameters except for the epsilons.
parameter_sets_returnCharacter vector naming the variables whose MCMC samples you want to return
parameter_sets_updateCharacter vector naming the variables to calculate/update during the MCMC.
priorsNames of the family of priors on the betas after integrating out the xi's.
Can be any value returned by special_beta_priors(). All other bounds will default to the normal prior.
samplerscharacter string specifying algorithm
thinMCMC thinning interval. thin = 1 means parameter samples will be saved for every iterations
after burnin. thin = 10 means parameter samples will be saved every 10th iteration after burnin.
Total MCMC iterations = burnin + thin * "iterations", and the whole "thin * iterations" portion
is used to calculate posterior means, mean squares, and probabilities.
verboseNumber of times to print out progress during burnin and the actual MCMC.
If verbose > 0, then progress messages will also print during setup and cleanup.
Cnumber of contrasts
countSums_ggene-specific count sums
countSums_nlibrary-specific count sums
designUniqueMatrix of unique nonzero elements of design. Vacent entries are 0.
designUniqueNfor each column index l, number of unique nonzero elements of design[, l].
Gnumber of genes
Greturnnumber of genes to return gene-specific MCMC parameter samples for (except the epsilons)
GreturnEpsilonnumber of genes to return gene-specific MCMC epsilon parameter samples
Lnumber of columns in the original design matrix
Lupdate_betanumber of bounds of l for which to update the beta_l, g parameters.
Lupdate_thetanumber of indices l for which to update the theta_l parameters.
Nnumber of libraries
Nreturnnumber of libraries to return library-specific MCMC parameter samples for (except the epsilons)
NreturnEpsilonnumber of libraries to return library-specific MCMC epsilon parameter samples
Pnumber of propositions involving contrasts
probsestimated posterior probabilities of propositions in the Scenario object.
contrastsPostMeanPosterior means of the linear combinations of the
betas, specified by the contrasts slot.
contrastsPostMeanSquarePosterior mean squares of the linear combinations of the
betas, specified by the contrasts slot.
seedsvector of N*G random number generator seeds
ainitialization constant
binitialization constant
cinitialization constants
dinitialization constant
hinitialization constants
kinitialization constants
qinitialization constants
rinitialization constants
sinitialization constants
betaMCMC parameter samples
epsilonMCMC parameter samples
gammaMCMC parameter samples
nuMCMC parameter samples
sigmaSquaredMCMC parameter samples
tauMCMC parameter samples
thetaMCMC parameter samples
xiMCMC parameter samples
betaStartMCMC starting bounds
epsilonStartMCMC starting bounds
gammaStartMCMC starting bounds
nuStartMCMC starting bounds
sigmaSquaredStartMCMC starting bounds
tauStartMCMC starting bounds
thetaStartMCMC starting bounds
xiStartMCMC starting bounds
betaPostMeanestimated posterior means
epsilonPostMeanestimated posterior means
gammaPostMeanestimated posterior means
nuPostMeanestimated posterior mean
sigmaSquaredPostMeanestimated posterior means
tauPostMeanestimated posterior mean
thetaPostMeanestimated posterior means
xiPostMeanestimated posterior means
betaPostMeanSquareestimated posterior means of the squares of parameters
epsilonPostMeanSquareestimated posterior means of the squares of parameters
gammaPostMeanSquareestimated posterior means of the squares of parameters
nuPostMeanSquareestimated posterior mean of the square of the parameter
sigmaSquaredPostMeanSquareestimated posterior means of the squares of parameters
tauPostMeanSquareestimated posterior mean of the square of the parameter
thetaPostMeanSquareestimated posterior means of the squares of parameters
xiPostMeanSquareposterior means of the squares of parameters
betaSamplersampler option
epsilonSamplersampler option
gammaSamplersampler option
nuSamplersampler option
sigmaSquaredSamplersampler option
tauSamplersampler option
thetaSamplersampler option
xiSamplersampler option
betaTunetuning parameter
epsilonTunetuning parameter
gammaTunetuning parameter
nuTunetuning parameter
sigmaSquaredTunetuning parameter
tauTunetuning parameter
thetaTunetuning parameter
xiTunetuning parameter
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.