item_residual: Item score residual

View source: R/item_residual.R

item_residualR Documentation

Item score residual

Description

Compute item score residual (i.e., item score - expected item score. Item score for a testlet model item is the summed raw score of all assertions in the testlet, and expected item score is expected raw score calculated with Lord-Wingersky algorithm (See ?lord_wing for details about the algorithm).

Usage

item_residual(
  theta,
  SA_dat = NULL,
  Cluster_dat = NULL,
  SA_parm = NULL,
  Cluster_parm = NULL,
  Dv = 1,
  n.nodes = 21,
  missing_as_incorrect = F
)

Arguments

theta

a scalar or a vector of student ability

SA_dat

For one student, a vector of response to standalone items. For more than one student, a matrix or dataframe of response to standalone items. One assertion per column. Column order must match row order in SA_parm. Use NA for missing responses

Cluster_dat

For one student, a vector of response to cluster items. For more than one student, a matrix or dataframe of response to cluster items. One assertion per column. Column order must match row order in Cluster_parm. Use NA for missing responses.

SA_parm

a matrix or dataframe of item parameters for standalone items, where columns are a (slope), b1, b2, ..., b_k (difficulty or step difficulty), g (guessing), ItemID, and AssertionID. Columns must follow the above order. See example_SA_parm for an example. Use ?example_SA_parm for detailed column descriptions

Cluster_parm

a matrix or dataframe of item parameters for cluster items, where columns are a (slope), b (difficulty), cluster variance, cluster position, ItemID, and AssertionID. Columns must follow the above order. See example_Cluster_parm for an example. Use ?example_Cluster_parm for detailed column descriptions

Dv

scaling factor for IRT model (usually 1 or 1.7)

n.nodes

number of nodes used when integrating out the specific dimension

missing_as_incorrect

by default, missings (NAs) are treated as missing; if TRUE, missings are treated as incorrect

Note

If the test does not have SA items or Cluster items, use default (NULL) for the corresponding data and parameter arguments

Author(s)

Zhongtian Lin lzt713@gmail.com

Examples

data(example_SA_parm)
data(example_Cluster_parm)
sigma <- diag(c(1, sqrt(unique(example_Cluster_parm$cluster_var))))
mu <- rep(0, nrow(sigma))
thetas <- MASS::mvrnorm(7,mu,sigma)
thetas[,1] <- seq(-3,3,1) #overall dimension theta values
itmDat <- sim_data(thetas = thetas, SA_parm = example_SA_parm, Cluster_parm = example_Cluster_parm)
SA_dat <- itmDat[,1:20]
Cluster_dat <- itmDat[,-1:-20]
rst <- item_residual(thetas[,1], SA_dat, Cluster_dat, example_SA_parm, example_Cluster_parm, n.nodes = 11)

woshikaqia/MIRTutils documentation built on Aug. 21, 2024, 4:30 p.m.