sim_data | R Documentation |
Simulate item response data based on IRT Models. Models currently supported are 1-3 PL, GPCM, Rasch Testlet, and a mix of these models. Use '?MIRTutils-package' for more details, such as the context of the current package.
sim_data(thetas, SA_parm = NULL, Cluster_parm = NULL, Dv = 1)
thetas |
When tests contain only standalone items:
When tests contain cluster items:
|
SA_parm |
A matrix or dataframe of item parameters for standalone items, where columns are
a (slope), b1, b2, ..., b_k (difficulty or step difficulty), g (guessing), ItemID, and AssertionID.
Columns must follow the above order.
See |
Cluster_parm |
a matrix or dataframe of item parameters for cluster items, where columns are
a (slope), b (difficulty), cluster variance, cluster position, ItemID, and AssertionID.
Columns must follow the above order.
See |
Dv |
scaling factor for IRT model (usually 1 or 1.7) |
A matrix of item response data. One examinee per row. One assertion per column. First SA data, then Cluster data.
If the test does not have SA items or Cluster items, use default (NULL) for the corresponding parameter argument
Zhongtian Lin <lzt713@gmail.com)
data(example_SA_parm)
data(example_Cluster_parm)
sigma <- diag(c(1, sqrt(unique(example_Cluster_parm$cluster_var))))
mu <- rep(0, nrow(sigma))
thetas <- MASS::mvrnorm(7,mu,sigma)
thetas[,1] <- seq(-3,3,1) #overall dimension theta values
itmDat <- sim_data(thetas = thetas, SA_parm = example_SA_parm, Cluster_parm = example_Cluster_parm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.