scoring | R Documentation |
Compute IRT latent scores (theta estimates). Scoring method currently supported are:
MMLE: marginal maximum likelihood estimation. When no Rasch testlet model item is involved, it reduces to regular MLE.
More methods to be added in the near future...
Use '?MIRTutils-package' for more details, such as the context of the current package and models supported.
scoring(
SA_dat = NULL,
Cluster_dat = NULL,
SA_parm = NULL,
Cluster_parm = NULL,
Dv = 1,
n.nodes = 21,
censor = c(-6, 6),
correction_val = 0.5,
SE = FALSE
)
SA_dat |
For one examinee, a vector or row matrix/dataframe of response to standalone items.
Responses must follow the row order in |
Cluster_dat |
For one examinee, a vector or row matrix/dataframe of response to cluster items.
Responses must follow the row order in |
SA_parm |
a matrix or dataframe of item parameters for standalone items, where columns are
a (slope), b1, b2, ..., b_k (difficulty or step difficulty), g (guessing), ItemID, and AssertionID.
Columns must follow the above order.
See |
Cluster_parm |
a matrix or dataframe of item parameters for cluster items, where columns are
a (slope), b (difficulty), cluster variance, cluster position, ItemID, and AssertionID.
Columns must follow the above order.
See |
Dv |
scaling factor for IRT model (usually 1 or 1.7) |
n.nodes |
number of nodes used when integrating out the nuisance dimension |
censor |
when there's perfect or all wrong score, this is a 2-element vector of lower and upper limit of
estimated theta for such score patterns. |
correction_val |
a value to add or subtract when there's perfect or all wrong score to avoid extremely large theta estimate. |
SE |
if TRUE, returns standard error |
a list of scoring results, where the first element is the estimated theta.
This function should be run for one examinee at a time. Use parallel processing for higher processing speed.
If the test does not have SA items or Cluster items, use default (NULL) for the corresponding data and parameter arguments
Zhongtian Lin lzt713@gmail.com
data(example_SA_parm)
data(example_Cluster_parm)
sigma <- diag(c(1, sqrt(unique(example_Cluster_parm$cluster_var))))
mu <- rep(0, nrow(sigma))
thetas <- MASS::mvrnorm(7,mu,sigma)
thetas[,1] <- seq(-3,3,1) #overall dimension theta values
itmDat <- sim_data(thetas = thetas, SA_parm = example_SA_parm, Cluster_parm = example_Cluster_parm)
SA_dat <- itmDat[,1:20]
Cluster_dat <- itmDat[,-1:-20]
# Scoring for the first examinee
rst <- scoring(SA_dat[1,], Cluster_dat[1,], example_SA_parm, example_Cluster_parm, n.nodes = 11, SE=TRUE)
rst$par # estimated theta
rst$SE # estimated standard error
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.