1 |
data |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (data)
{
library(randomForest)
library(caret)
library(ggplot2)
ggplotRegression <- function(fit) {
a <- signif(coef(fit)[1], digits = 5)
b <- signif(coef(fit)[2], digits = 5)
if (coef(fit)[2] >= 0) {
textlab <- paste("y = ", a, " + ", b, "x", sep = "")
}
else {
textlab <- paste("y = ", a, " - ", b, "x", sep = "")
}
options(repr.plot.width = 4, repr.plot.height = 4)
ggplot(fit$model, aes_string(x = names(fit$model)[1],
y = names(fit$model)[2])) + geom_point() + geom_smooth(method = "lm",
col = "red", size = 0.5, se = TRUE) + labs(x = "Observations",
y = "Predictions", title = paste("Adj. R2 = ", signif(summary(fit)$adj.r.squared,
5), " | ", textlab)) + theme(plot.title = element_text(size = 8,
face = "bold"))
}
res <- cor(data)
traindata <- base::sample(nrow(data), size = 0.6 * nrow(data),
replace = FALSE)
TrainSet <- data[traindata, ]
ValidSet <- data[-traindata, ]
ctrl <- caret::trainControl(method = "cv", number = 10, savePredictions = TRUE)
mod <- train(log(BA) ~ I(log(H)), data = TrainSet, method = "lm",
trControl = ctrl, metric = "Rsquared")
predictions <- predict(mod, ValidSet)
predicted_BA <- data.frame(log(ValidSet$BA), predictions)
fit.mod <- lm(log(ValidSet$BA) ~ predictions, data = predicted_BA)
g <- ggplotRegression(fit.mod)
print(round(res, 3))
print(mod$finalModel)
g
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.